Show simple item record

dc.contributor.authorBarreiro Gómez, Julián
dc.contributor.authorObando, Germán
dc.contributor.authorQuijano Silva, Nicanor
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2017-05-10T11:17:42Z
dc.date.available2017-05-10T11:17:42Z
dc.date.issued2017-02-01
dc.identifier.citationBarreiro, J., Obando, G., Quijano, N. Distributed population dynamics : optimization and control applications. "IEEE Transactions on Systems, Man, and Cybernetics. Systems", 1 Febrer 2017, vol. 47, núm. 2, p. 304-314.
dc.identifier.issn2168-2216
dc.identifier.urihttp://hdl.handle.net/2117/104264
dc.description© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.description.abstractPopulation dynamics have been widely used in the design of learning and control systems for networked engineering applications, where the information dependency among elements of the network has become a relevant issue. Classic population dynamics (e.g., replicator, logit choice, Smith, and projection) require full information to evolve to the solution (Nash equilibrium). The main reason is that classic population dynamics are deduced by assuming well-mixed populations, which limits the applications where this theory can be implemented. In this paper, we extend the concept of population dynamics for nonwell-mixed populations in order to deal with distributed information structures that are characterized by noncomplete graphs. Although the distributed population dynamics proposed in this paper use partial information, they preserve similar characteristics and properties of their classic counterpart. Specifically, we prove mass conservation and convergence to Nash equilibrium. To illustrate the performance of the proposed dynamics, we show some applications in the solution of optimization problems, classic games, and the design of distributed controllers.
dc.format.extent11 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectÀrees temàtiques de la UPC::Informàtica::Robòtica
dc.subject.lcshAutomatic control
dc.subject.otherpopulation dynamics
dc.subject.otherDistributed control
dc.subject.otherdistributed optimization
dc.subject.otherevolutionary game theory
dc.titleDistributed population dynamics : optimization and control applications
dc.typeArticle
dc.subject.lemacControl automàtic
dc.identifier.doi10.1109/TSMC.2016.2523934
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://ieeexplore.ieee.org/document/7419636/
dc.rights.accessOpen Access
local.identifier.drac19681091
dc.description.versionPostprint (author's final draft)
local.citation.authorBarreiro, J.; Obando, G.; Quijano, N.
local.citation.publicationNameIEEE Transactions on Systems, Man, and Cybernetics. Systems
local.citation.volume47
local.citation.number2
local.citation.startingPage304
local.citation.endingPage314


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder