Show simple item record

dc.contributor.authorEchalier, Cecile
dc.contributor.authorLevato, Riccardo
dc.contributor.authorMateos Timoneda, Miguel Ángel
dc.contributor.authorCastaño Linares, Óscar
dc.contributor.authorDejean, S
dc.contributor.authorGarric, X
dc.contributor.authorPinese, C
dc.contributor.authorNoël, D
dc.contributor.authorEngel López, Elisabeth
dc.contributor.authorMartinez, J
dc.contributor.authorMehdi, A
dc.contributor.authorSubra, Gilles
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.date.accessioned2017-05-05T14:25:27Z
dc.date.available2018-02-21T01:30:27Z
dc.date.issued2017-02-21
dc.identifier.citationEchalier, C., Levato, R., Mateos, M., Castaño, O., Dejean, S., Garric, X., Pinese, C., Noël, D., Engel, E., Martinez, J., Mehdi, A., Subra, G. Modular bioink for 3D printing of biocompatible hydrogels: sol-gel polymerization of hybrid peptides and polymers. "Journal of materials chemistry B", 21 Febrer 2017, vol. 7, p. 12231-12235.
dc.identifier.issn2050-750X
dc.identifier.urihttp://hdl.handle.net/2117/104132
dc.description.abstractAn unprecedented generic system allowing the 3D printing of peptide-functionalized hydrogels by soft sol–gel inorganic polymerization is presented. Hybrid silylated inorganic/bioorganic blocks are mixed in biological buffer in an appropriate ratio, to yield a multicomponent bioink that can be printed as a hydrogel without using any photochemical or organic reagent. Hydrolysis and condensation of the silylated precursors occur during the printing process and result in a covalent network in which molecules are linked through siloxane bonds. The viscosity of the colloidal solution used as bioink was monitored in order to set up the optimal conditions for extrusion printing. Grid-patterned hydrogel scaffolds containing a hybrid integrin ligand were printed using a pressure-driven rapid prototyping machine. Finally, they were seeded with mesenchymal stem cells, demonstrating their suitability for cell culture. The versatility of the sol–gel process and its biocompatibility makes this approach highly promising for the preparation of tailor-made cell-laden scaffolds.
dc.format.extent5 p.
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.rightsAttribution 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica
dc.subject.lcshBiocompatible Materials
dc.subject.lcshPolymers
dc.subject.lcshHydrogels--chemistry
dc.titleModular bioink for 3D printing of biocompatible hydrogels: sol-gel polymerization of hybrid peptides and polymers
dc.typeArticle
dc.subject.lemacPolímers
dc.subject.lemacMaterials biocompatibles
dc.contributor.groupUniversitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
dc.identifier.doi10.1039/c6ra28540f
dc.rights.accessOpen Access
local.identifier.drac19815334
dc.description.versionPostprint (published version)
local.citation.authorEchalier, C.; Levato, R.; Mateos, M.; Castaño, O.; Dejean, S.; Garric, X.; Pinese, C.; Noël, D.; Engel, E.; Martinez, J.; Mehdi, A.; Subra, G.
local.citation.publicationNameJournal of materials chemistry B
local.citation.volume7
local.citation.startingPage12231
local.citation.endingPage12235


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution 3.0 Spain