Show simple item record

dc.contributor.authorSolís, Diego M.
dc.contributor.authorTaboada, José M,
dc.contributor.authorObelleiro, Fernando
dc.contributor.authorLiz-Marzán, Luis M.
dc.contributor.authorGarcía de Abajo, Francisco Javier
dc.contributor.otherUniversitat Politècnica de Catalunya. Institut de Ciències Fotòniques
dc.date.accessioned2017-04-28T14:45:56Z
dc.date.available2017-04-28T14:45:56Z
dc.date.issued2016-12-20
dc.identifier.citationSolís, D. M. [et al.]. Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations. "ACS Photonics", 20 Desembre 2016, vol. 4, núm. 2, p. 329-337.
dc.identifier.issn2330-4022
dc.identifier.urihttp://hdl.handle.net/2117/103861
dc.description.abstractSurface-enhanced Raman scattering (SERS) has become a widely used spectroscopic technique for chemical identification, providing unbeaten sensitivity down to the singlemolecule level. The amplification of the optical near field produced by collective electron excitations plasmons in nanostructured metal surfaces gives rise to a dramatic increase by many orders of magnitude in the Raman scattering intensities from neighboring molecules. This effect strongly depends on the detailed geometry and composition of the plasmonsupporting metallic structures. However, the search for optimized SERS substrates has largely relied on empirical data, due in part to the complexity of the structures, whose simulation becomes prohibitively demanding. In this work, we use state-of-the-art electromagnetic computation techniques to produce predictive simulations for a wide range of nanoparticle-based SERS substrates, including realistic configurations consisting of random arrangements of hundreds of nanoparticles with various morphologies. This allows us to derive rules of thumb for the influence of particle anisotropy and substrate coverage on the obtained SERS enhancement and optimum spectral ranges of operation. Our results provide a solid background to understand and design optimized SERS substrates.
dc.format.extent9 p.
dc.language.isoeng
dc.publisherACS
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshPlasmons (Physics)
dc.subject.othersurface-enhanced
dc.titleOptimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations
dc.typeArticle
dc.subject.lemacPlasmons (Física)
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://pubs.acs.org/doi/abs/10.1021/acsphotonics.6b00786
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/613024/EU/GRAPHENE-BASED SINGLE-PHOTON NONLINEAR OPTICAL DEVICES/GRASP
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/267867/EU/Development of plasmonic quorum sensors for understanding bacterial-eukaryotic cell relations/PLASMAQUO
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/604391/EU/Graphene-Based Revolutions in ICT And Beyond/GRAPHENE
local.citation.publicationNameACS Photonics
local.citation.volume4
local.citation.number2
local.citation.startingPage329
local.citation.endingPage337
dc.identifier.pmid28239616


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record