Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations
View/Open
Cita com:
hdl:2117/103861
Document typeArticle
Defense date2016-12-20
PublisherACS
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectGRASP - GRAPHENE-BASED SINGLE-PHOTON NONLINEAR OPTICAL DEVICES (EC-FP7-613024)
PLASMAQUO - Development of plasmonic quorum sensors for understanding bacterial-eukaryotic cell relations (EC-FP7-267867)
GRAPHENE - Graphene-Based Revolutions in ICT And Beyond (EC-FP7-604391)
PLASMAQUO - Development of plasmonic quorum sensors for understanding bacterial-eukaryotic cell relations (EC-FP7-267867)
GRAPHENE - Graphene-Based Revolutions in ICT And Beyond (EC-FP7-604391)
Abstract
Surface-enhanced Raman scattering (SERS) has
become a widely used spectroscopic technique for chemical
identification, providing unbeaten sensitivity down to the singlemolecule
level. The amplification of the optical near field
produced by collective electron excitations plasmons in
nanostructured metal surfaces gives rise to a dramatic increase
by many orders of magnitude in the Raman scattering intensities
from neighboring molecules. This effect strongly depends on
the detailed geometry and composition of the plasmonsupporting
metallic structures. However, the search for
optimized SERS substrates has largely relied on empirical
data, due in part to the complexity of the structures, whose
simulation becomes prohibitively demanding. In this work, we
use state-of-the-art electromagnetic computation techniques to
produce predictive simulations for a wide range of nanoparticle-based SERS substrates, including realistic configurations
consisting of random arrangements of hundreds of nanoparticles with various morphologies. This allows us to derive rules of
thumb for the influence of particle anisotropy and substrate coverage on the obtained SERS enhancement and optimum spectral
ranges of operation. Our results provide a solid background to understand and design optimized SERS substrates.
CitationSolís, D. M. [et al.]. Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations. "ACS Photonics", 20 Desembre 2016, vol. 4, núm. 2, p. 329-337.
ISSN2330-4022
Publisher versionhttp://pubs.acs.org/doi/abs/10.1021/acsphotonics.6b00786
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
acsphotonics%2E6b00786.pdf | 6,634Mb | View/Open |