Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

58.848 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • SARTI - Sistemes d'Adquisició Remota i Tractament de la Informació
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • SARTI - Sistemes d'Adquisició Remota i Tractament de la Informació
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic fish counting from underwater video images: performance estimation and evaluation

Thumbnail
View/Open
Automatic fish.pdf (284,3Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/103822

Show full item record
Marini, Simone
Azzurro, Ernesto
Coco, Salvatore
Río Fernandez, Joaquín delMés informacióMés informacióMés informació
Nogueras Cervera, MarcMés informacióMés informacióMés informació
Sbragaglia, Valerio
Toma, DanielMés informacióMés informacióMés informació
Aguzzi, Jacopo
Document typeConference report
Defense date2016
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Cabled observatories offer new opportunities to monitor species abundances at frequencies and durations never attained before. When nodes bear cameras, these may be transformed into the first sensor capable of quantifying biological activities at individual, populational, species, and community levels, if automation image processing can be sufficiently implemented. Here, we developed a binary classifier for the fish automated recognition based on Genetic Programming tested on the images provided by OBSEA EMSO testing site platform located at 20 m of depth off Vilanova i la Gertrú (Spain). The performance evaluation of the automatic classifier resulted in a 78% of accuracy compared with the manual counting. Considering the huge dimension of data provided by cabled observatories and the difficulty of manual processing, we consider this result highly promising also in view of future implementation of the methodology to increase the accuracy.
CitationMarini, S., Azzurro, E., Coco, S., Del Río, J., Nogueras, M., Sbragaglia, V., Toma, D.M., Aguzzi, J. Automatic fish counting from underwater video images: performance estimation and evaluation. A: International Workshop on Marine Technology. "MARTECH 2016: 7th International Workshop on Marine Technology, Barcelona October 26th, 27th and 28th, 2016". Lisbon: 2016, p. 67-70. 
URIhttp://hdl.handle.net/2117/103822
ISBN978-84-617-4152-6
Publisher versionhttp://www.upc.edu/cdsarti/martech/usb_2016/paginas/articulos_id/id.html
Collections
  • SARTI - Sistemes d'Adquisició Remota i Tractament de la Informació - Ponències/Comunicacions de congressos [185]
  • Departament d'Enginyeria Electrònica - Ponències/Comunicacions de congressos [1.626]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Automatic fish.pdf284,3KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina