Show simple item record

dc.contributor.authorObando, Germán
dc.contributor.authorBarreiro Gómez, Julián
dc.contributor.authorQuijano Silva, Nicanor
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2017-04-26T14:21:07Z
dc.date.available2017-04-26T14:21:07Z
dc.date.issued2016
dc.identifier.citationObando, G., Barreiro, J., Quijano, N. A class of population dynamics for reaching epsilon-equilibria : engineering applications. A: American Control Conference. "2016 American Control Conference, ACC 2016". Boston, MA: 2016, p. 4713-4718.
dc.identifier.isbn9781467386821
dc.identifier.urihttp://hdl.handle.net/2117/103755
dc.description© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
dc.description.abstractThis document proposes a novel class of population dynamics that are parameterized by a nonnegative scalar . We show that any rest point of the proposed dynamics corresponds to an -equilibrium of the underlying population game. In order to derive this class of population dynamics, our approach is twofold. First, we use an extension of the pairwise comparison revision protocol and the classic mean dynamics for well-mixed populations. This approach requires full-information. Second, we employ the same revision protocol and a version of the mean dynamics for non-well-mixed populations that uses only local information. Furthermore, invariance properties of the set of allowed population states are analyzed, and stability of the -equilibria is formally proven. Finally, two engineering examples based on the -dynamics are presented: A control scenario in which noisy measurements should be mitigated, and a humanitarian engineering application related to wealth distribution in poor societies. © 2016 American Automatic Control Council (AACC).
dc.format.extent6 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Informàtica::Automàtica i control
dc.subject.lcshGame theory
dc.subject.lcshNash equilibrium
dc.subject.othergame theory
dc.subject.otherepsilon-equilibria
dc.subject.otherpopulation dynamics
dc.subject.otherimperfect information
dc.subject.otherhumanitarian engineering
dc.titleA class of population dynamics for reaching epsilon-equilibria : engineering applications
dc.typeConference report
dc.subject.lemacJocs, Teoria de
dc.subject.lemacNash, Equilibri de
dc.identifier.doi10.1109/ACC.2016.7526098
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://ieeexplore.ieee.org/document/7526098/
dc.rights.accessOpen Access
local.identifier.drac19265795
dc.description.versionPostprint (author's final draft)
local.citation.authorObando, G.; Barreiro, J.; Quijano, N.
local.citation.contributorAmerican Control Conference
local.citation.pubplaceBoston, MA
local.citation.publicationName2016 American Control Conference, ACC 2016
local.citation.startingPage4713
local.citation.endingPage4718


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder