Production matrices for geometric graphs
View/Open
Cita com:
hdl:2117/103649
Document typeArticle
Defense date2016
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
We present production matrices for non-crossing geometric graphs on point sets in convex position, which allow us to derive formulas for the numbers of such graphs. Several known identities for Catalan numbers, Ballot numbers, and Fibonacci numbers arise in a natural way, and also new formulas are obtained, such as a formula for the number of non-crossing geometric graphs with root vertex of given degree. The characteristic polynomials of some of these production matrices are also presented. The proofs make use of generating trees and Riordan arrays.
CitationHuemer, C., Pilz, A., Seara, C., Silveira, R.I. Production matrices for geometric graphs. "Electronic notes in discrete mathematics", 2016, vol. 54, p. 301-306.
ISSN1571-0653
Publisher versionhttp://www.sciencedirect.com/science/journal/15710653
Files | Description | Size | Format | View |
---|---|---|---|---|
JMDA2016_paper_64.pdf | 271,1Kb | View/Open |