Compositional data for global monitoring: the case of drinking water and sanitation
dc.contributor.author | Pérez Foguet, Agustí |
dc.contributor.author | Giné Garriga, Ricard |
dc.contributor.author | Ortego Martínez, María Isabel |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Química |
dc.date.accessioned | 2017-04-18T15:13:33Z |
dc.date.available | 2019-08-01T00:25:50Z |
dc.date.issued | 2017-07 |
dc.identifier.citation | Pérez-Foguet, A., Gine, R., Ortego, M.I. Compositional data for global monitoring: the case of drinking water and sanitation. "Science of the total environment", Juliol 2017, vol. 590-591, p. 554-565. |
dc.identifier.issn | 0048-9697 |
dc.identifier.uri | http://hdl.handle.net/2117/103521 |
dc.description.abstract | Introduction At a global level, access to safe drinking water and sanitation has been monitored by the Joint Monitoring Programme (JMP) of WHO and UNICEF. The methods employed are based on analysis of data from household surveys and linear regression modelling of these results over time. However, there is evidence of non-linearity in the JMP data. In addition, the compositional nature of these data is not taken into consideration. This article seeks to address these two previous shortcomings in order to produce more accurate estimates. Methods We employed an isometric log-ratio transformation designed for compositional data. We applied linear and non-linear time regressions to both the original and the transformed data. Specifically, different modelling alternatives for non-linear trajectories were analysed, all of which are based on a generalized additive model (GAM). Results and discussion Non-linear methods, such as GAM, may be used for modelling non-linear trajectories in the JMP data. This projection method is particularly suited for data-rich countries. Moreover, the ilr transformation of compositional data is conceptually sound and fairly simple to implement. It helps improve the performance of both linear and non-linear regression models, specifically in the occurrence of extreme data points, i.e. when coverage rates are near either 0% or 100%. |
dc.format.extent | 12 p. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Desenvolupament humà i sostenible::Desenvolupament humà::Aigua i sanejament |
dc.subject.lcsh | Drinking water--International cooperation |
dc.subject.lcsh | Sanitation--International cooperation |
dc.subject.other | Water |
dc.subject.other | Sanitation and hygiene |
dc.subject.other | Service ladder |
dc.subject.other | Compositional data |
dc.subject.other | Log transformation |
dc.subject.other | Joint Monitoring Programme (JMP) of WHO and UNICEF |
dc.title | Compositional data for global monitoring: the case of drinking water and sanitation |
dc.type | Article |
dc.subject.lemac | Aigua potable |
dc.subject.lemac | Sanejament -- Cooperació internacional |
dc.contributor.group | Universitat Politècnica de Catalunya. EScGD - Engineering Sciences and Global Development |
dc.contributor.group | Universitat Politècnica de Catalunya. COSDA-UPC - COmpositional and Spatial Data Analysis |
dc.identifier.doi | 10.1016/j.scitotenv.2017.02.220 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://www.sciencedirect.com/science/article/pii/S0048969717304850 |
dc.rights.access | Open Access |
local.identifier.drac | 19857824 |
dc.description.version | Postprint (author's final draft) |
local.citation.author | Pérez-Foguet, A.; Gine, R.; Ortego, M.I. |
local.citation.publicationName | Science of the total environment |
local.citation.volume | 590-591 |
local.citation.startingPage | 554 |
local.citation.endingPage | 565 |
Files in this item
This item appears in the following Collection(s)
-
Articles de revista [2.456]
-
Articles de revista [63]
-
Articles de revista [1.901]
-
Articles de revista [88]
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain