Show simple item record

dc.contributor.authorSáez Viñas, Pablo
dc.contributor.authorAlastrué, V.
dc.contributor.authorPena, Estefania
dc.contributor.authorDoblaré, Manuel
dc.contributor.authorMartínez, Miguel Ángel
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.identifier.citationSaez, P., Alastrué, V., Pena, E., Doblaré, M., Martínez, M.A. Anisotropic microsphere-based approach to damage in soft fibered tissue. "Biomechanics and modeling in mechanobiology", Maig 2012, vol. 11, núm. 5, p. 595-608.
dc.descriptionThe final publication is available at Springer via
dc.description.abstractAn anisotropic damage model for soft fibered tissue is presented in this paper, using a multi-scale scheme and focusing on the directionally dependent behavior of these materials. For this purpose, a micro-structural or, more precisely, a microsphere-based approach is used to model the contribution of the fibers. The link between micro-structural contribution and macroscopic response is achieved by means of computational homogenization, involving numerical integration over the surface of the unit sphere. In order to deal with the distribution of the fibrils within the fiber, a von Mises probability function is incorporated, and the mechanical (phenomenological) behavior of the fibrils is defined by an exponential-type model. We will restrict ourselves to affine deformations of the network, neglecting any cross-link between fibrils and sliding between fibers and the surrounding ground matrix. Damage in the fiber bundles is introduced through a thermodynamic formulation, which is directly included in the hyperelastic model. When the fibers are stretched far from their natural state, they become damaged. The damage increases gradually due to the progressive failure of the fibrils that make up such a structure. This model has been implemented in a finite element code, and different boundary value problems are solved and discussed herein in order to test the model features. Finally, a clinical application with the material behavior obtained from actual experimental data is also presented.
dc.format.extent14 p.
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.otherSoft tissue
dc.subject.otherAffine deformations
dc.subject.otherBlood vessels
dc.titleAnisotropic microsphere-based approach to damage in soft fibered tissue
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::92 Biology and other natural sciences::92B Mathematical biology in general
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70G General models, approaches, and methods
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
local.citation.authorSaez, P.; Alastrué, V.; Pena, E.; Doblaré, M.; Martínez, M.A.
local.citation.publicationNameBiomechanics and modeling in mechanobiology

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder