Show simple item record

dc.contributor.authorSáez Viñas, Pablo
dc.contributor.authorPeña, Estefanía
dc.contributor.authorMartínez, Miguel Ángel
dc.contributor.authorKuhl, Ellen
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2017-04-06T11:24:23Z
dc.date.available2017-04-06T11:24:23Z
dc.date.issued2014-06
dc.identifier.citationSaez, P., Peña, E., Martínez, M., Kuhl, E. Computational modeling of hypertensive growth in the human carotid artery. "Computational mechanics", Juny 2014, vol. 53, núm. 6, p. 1183-1196.
dc.identifier.issn0178-7675
dc.identifier.urihttp://hdl.handle.net/2117/103426
dc.descriptionThe final publication is available at Springer via http://dx.doi.org/10.1007/s00466-013-0959-z
dc.description.abstractArterial hypertension is a chronic medical condition associated with an elevated blood pressure. Chronic arterial hypertension initiates a series of events, which are known to collectively initiate arterial wall thickening. However, the correlation between macrostructural mechanical loading, microstructural cellular changes, and macrostructural adaptation remains unclear. Here, we present a microstructurally motivated computational model for chronic arterial hypertension through smooth muscle cell growth. To model growth, we adopt a classical concept based on the multiplicative decomposition of the deformation gradient into an elastic part and a growth part. Motivated by clinical observations, we assume that the driving force for growth is the stretch sensed by the smooth muscle cells. We embed our model into a finite element framework, where growth is stored locally as an internal variable. First, to demonstrate the features of our model, we investigate the effects of hypertensive growth in a real human carotid artery. Our results agree nicely with experimental data reported in the literature both qualitatively and quantitatively.
dc.format.extent14 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Probabilitat
dc.subject.lcshBiomathematics
dc.subject.lcshCombinatorial probabilities
dc.subject.otherBiomechanics
dc.subject.otherGrowth
dc.subject.otherSmooth muscle cells
dc.subject.otherHypertension
dc.subject.otherFinite element method
dc.titleComputational modeling of hypertensive growth in the human carotid artery
dc.typeArticle
dc.subject.lemacBiomatemàtica
dc.subject.lemacProbabilitats
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1007/s00466-013-0959-z
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::92 Biology and other natural sciences::92B Mathematical biology in general
dc.subject.amsClassificació AMS::60 Probability theory and stochastic processes::60C05 Combinatorial probability
dc.relation.publisherversionhttp://link.springer.com/article/10.1007%2Fs00466-013-0959-z
dc.rights.accessOpen Access
drac.iddocument19769161
dc.description.versionPostprint (author's final draft)
upcommons.citation.authorSaez, P., Peña, E., Martínez, M., Kuhl, E.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameComputational mechanics
upcommons.citation.volume53
upcommons.citation.number6
upcommons.citation.startingPage1183
upcommons.citation.endingPage1196


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder