Show simple item record

dc.contributor.authorCorbella Vidal, Clara
dc.contributor.authorPuigagut Juárez, Jaume
dc.contributor.authorGarfi, Marianna
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.identifier.citationCorbella, C., Puigagut, J., M. G. Life cycle assessment of constructed wetland systems for wastewater treatment coupled with microbial fuel cells. "Science of the total environment", Abril 2017, vol. 584-585, p. 355-362.
dc.description.abstractThe aim of this study was to assess the environmental impact of microbial fuel cells (MFCs) implemented in constructed wetlands (CWs). To this aim a life cycle assessment (LCA) was carried out comparing three scenarios: 1) a conventional CW system (without MFC implementation); 2) a CW system coupled with a gravel-based anode MFC, and 3) a CW system coupled with a graphite-based anode MFC. All systems served a population equivalent of 1500 p.e. They were designed to meet the same effluent quality. Since MFCs implemented in CWs improve treatment efficiency, the CWs coupled with MFCs had lower specific area requirement compared to the conventional CW system. The functional unit was 1 m3 of wastewater. The LCA was performed with the software SimaPro® 8, using the CML-IA baseline method. The three scenarios considered showed similar environmental performance in all the categories considered, with the exception of Abiotic Depletion Potential. In this impact category, the potential environmental impact of the CW system coupled with a gravel-based anode MFC was around 2 times higher than that generated by the conventional CW system and the CW system coupled with a graphite-based anode MFC. It was attributed to the large amount of less environmentally friendly materials (e.g. metals, graphite) for MFCs implementation, especially in the case of gravel-based anode MFCs. Therefore, the CW system coupled with graphite-based anode MFC appeared as the most environmentally friendly solution which can replace conventional CWs reducing system footprint by up to 20%. An economic assessment showed that this system was around 1.5 times more expensive than the conventional CW system.
dc.format.extent8 p.
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Desenvolupament humà i sostenible::Enginyeria ambiental::Tractament de l'aigua
dc.subject.lcshMicrobial fuel cells
dc.subject.lcshConstructed wetlands
dc.subject.otherConstructed wetland
dc.subject.otherEnvironmental impact assessment
dc.subject.otherDecentralised wastewater treatment system
dc.subject.otherLife cycle assessment
dc.subject.otherMicrobial fuel cells
dc.subject.otherWastewater treatment
dc.titleLife cycle assessment of constructed wetland systems for wastewater treatment coupled with microbial fuel cells
dc.subject.lemacZones humides artificials
dc.contributor.groupUniversitat Politècnica de Catalunya. GEMMA - Grup d'Enginyeria i Microbiologia del Medi Ambient
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
local.citation.authorCorbella, C.; Puigagut, J.; Garfi, Marianna
local.citation.publicationNameScience of the total environment

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain