dc.contributor.author | Morillo Bosch, M. Paz |
dc.contributor.author | Ràfols Salvador, Carla |
dc.contributor.author | Villar Santos, Jorge Luis |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtiques |
dc.date.accessioned | 2017-04-04T05:23:07Z |
dc.date.available | 2017-04-04T05:23:07Z |
dc.date.issued | 2016 |
dc.identifier.citation | Morillo, M., Rafols, C., Villar, J. The Kernel Matrix Diffie-Hellman assumption. A: Annual International Conference on the Theory and Application of Cryptology and Information Security. "Advances in Cryptology -- ASIACRYPT 2016: 22nd International Conference on the Theory and Application of Cryptology and Information Security: Hanoi, Vietnam: December 4-8, 2016: proceedings, part I". Hanoi: Springer, 2016, p. 729-758. |
dc.identifier.isbn | 978-3-662-53887-6 |
dc.identifier.uri | http://hdl.handle.net/2117/103241 |
dc.description | The final publication is available at https://link.springer.com/chapter/10.1007%2F978-3-662-53887-6_27 |
dc.description.abstract | We put forward a new family of computational assumptions, the Kernel Matrix Diffie-Hellman Assumption. Given some matrix A sampled from some distribution D, the kernel assumption says that it is hard to find “in the exponent” a nonzero vector in the kernel of A¿ . This family is a natural computational analogue of the Matrix Decisional Diffie-Hellman Assumption (MDDH), proposed by Escala et al. As such it allows to extend the advantages of their algebraic framework to computational assumptions. The k-Decisional Linear Assumption is an example of a family of decisional assumptions of strictly increasing hardness when k grows. We show that for any such family of MDDH assumptions, the corresponding Kernel assumptions are also strictly increasingly weaker. This requires ruling out the existence of some black-box reductions between flexible problems (i.e., computational problems with a non unique solution). |
dc.format.extent | 30 p. |
dc.language.iso | eng |
dc.publisher | Springer |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta |
dc.subject.lcsh | Artificial intelligence |
dc.subject.lcsh | Computer science--Mathematics |
dc.subject.other | Matrix assumptions |
dc.subject.other | Computational problemsBlack-box reductions |
dc.subject.other | Structure preserving cryptography |
dc.title | The Kernel Matrix Diffie-Hellman assumption |
dc.type | Conference lecture |
dc.subject.lemac | Intel·ligència artificial |
dc.subject.lemac | Informàtica--Matemàtica |
dc.contributor.group | Universitat Politècnica de Catalunya. MAK - Matemàtica Aplicada a la Criptografia |
dc.identifier.doi | 10.1007/978-3-662-53887-6_27 |
dc.description.peerreviewed | Peer Reviewed |
dc.subject.ams | Classificació AMS::68 Computer science::68T Artificial intelligence |
dc.subject.ams | Classificació AMS::68 Computer science::68R Discrete mathematics in relation to computer science |
dc.relation.publisherversion | http://link.springer.com/chapter/10.1007%2F978-3-662-53887-6_27 |
dc.rights.access | Open Access |
local.identifier.drac | 19721929 |
dc.description.version | Postprint (author's final draft) |
local.citation.author | Morillo, M.; Rafols, C.; Villar, J. |
local.citation.contributor | Annual International Conference on the Theory and Application of Cryptology and Information Security |
local.citation.pubplace | Hanoi |
local.citation.publicationName | Advances in Cryptology -- ASIACRYPT 2016: 22nd International Conference on the Theory and Application of Cryptology and Information Security: Hanoi, Vietnam: December 4-8, 2016: proceedings, part I |
local.citation.startingPage | 729 |
local.citation.endingPage | 758 |