Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

60.175 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Màster universitari Erasmus Mundus en Mecànica Computacional (Pla 2013)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Màster universitari Erasmus Mundus en Mecànica Computacional (Pla 2013)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Orthogonal subgrid-scale stabilization for nonlinear reaction-convection-diffusion equations

Thumbnail
View/Open
ThesisFinal.pdf (33,53Mb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/103214

Show full item record
Komala Sheshachala, Sanjay
Tutor / directorCodina, RamonMés informacióMés informacióMés informació
Document typeMaster thesis
Date2016
Rights accessOpen Access
Attribution-NonCommercial 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial 3.0 Spain
Abstract
Nonlinear reaction-convection-diffusion equations are encountered in modeling of a variety of natural phenomena such as in chemical reactions, population dynamics and contaminant dispersal. When the scale of convective and reactive phenomena are large, Galerkin finite element solution fails. As a remedy, Orthogonal Subgrid Scale stabilization is applied to the finite element formulation. It has its origins in the Variational Multi Scale approach. It is based on a fine grid - coarse grid component sum decomposition of solution and utilizes the fine grid solution orthogonal to the residual of the finite element coarse grid solution as a correction term. With selective mesh refinement, a stabilized oscillation-free solution that can capture sharp layers is obtained. Newton Raphson method is utilized for the linearization of nonlinear reaction terms. Backward difference scheme is used for time integration. The formulation is tested for cases with standalone and coupled systems of transient nonlinear reaction-convection-diffusion equations. Method of manufactured solution is used to test for correctness and bug-free implementation of the formulation. In the error analysis, optimal convergence is achieved. Applications in channel flow, cavity flow and predator-prey model is used to highlight the need and effectiveness of the stabilization technique.
SubjectsFinite element method, Elements finits, Mètode dels
DegreeMÀSTER UNIVERSITARI ERASMUS MUNDUS EN MECÀNICA COMPUTACIONAL (Pla 2013)
URIhttp://hdl.handle.net/2117/103214
Collections
  • Màsters oficials - Màster universitari Erasmus Mundus en Mecànica Computacional (Pla 2013) [11]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
ThesisFinal.pdf33,53MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina