Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.781 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Matemàtiques
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Matemàtiques
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural aspects of Hamilton–Jacobi theory

Thumbnail
View/Open
arxiv1511.00288.pdf (313,6Kb)
Share:
 
 
10.1142/S0219887816500171
 
  View Usage Statistics
Cita com:
hdl:2117/102965

Show full item record
Cariñena Marzo, José F.
Gràcia Sabaté, Francesc XavierMés informacióMés informacióMés informació
Marmo, Giuseppe
Martínez Fernandez, Eduardo
Muñoz Lecanda, Miguel CarlosMés informacióMés informació
Román Roy, NarcisoMés informacióMés informacióMés informació
Document typeArticle
Defense date2016-02-01
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In our previous papers [11, 13] we showed that the Hamilton–Jacobi problem can be regarded as a way to describe a given dynamics on a phase space manifold in terms of a family of dynamics on a lower-dimensional manifold. We also showed how constants of the motion help to solve the Hamilton–Jacobi equation. Here we want to delve into this interpretation by considering the most general case: a dynamical system on a manifold that is described in terms of a family of dynamics (‘slicing vector fields’) on lower-dimensional manifolds. We identify the relevant geometric structures that lead from this decomposition of the dynamics to the classical Hamilton– Jacobi theory, by considering special cases like fibred manifolds and Hamiltonian dynamics, in the symplectic framework and the Poisson one. We also show how a set of functions on a tangent bundle can determine a second-order dynamics for which they are constants of the motion.
Description
The final publication is available at Springer via http://dx.doi.org/10.1142/S0219887816500171
CitationCariñena, J.F., Gràcia, Xavier, Marmo, G., Martínez, E., Muñoz-Lecanda, Miguel C., Roman-Roy, N. Structural aspects of Hamilton–Jacobi theory. "International journal of geometric methods in modern physics", 1 Febrer 2016, vol. 13, núm. 2, p. 1-26. 
URIhttp://hdl.handle.net/2117/102965
DOI10.1142/S0219887816500171
ISSN0219-8878
Publisher versionhttp://www.worldscientific.com/doi/pdf/10.1142/S0219887816500171
Collections
  • Departament de Matemàtiques - Articles de revista [3.007]
  • DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions - Articles de revista [50]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
arxiv1511.00288.pdf313,6KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina