Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.133 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria Telemàtica
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria Telemàtica
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

BaNa: a noise resilient fundamental frequency detection algorithm for speech and music

Thumbnail
View/Open
10.1.1.569.9917.pdf (2,207Mb)
 
10.1109/TASLP.2014.2352453
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/102780

Show full item record
Yang, Na
Ba, He
Cai, Weiyang
Demirkol, Ilker SeyfettinMés informacióMés informacióMés informació
Heinzelman, Wendi
Document typeArticle
Defense date2014-08-27
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Fundamental frequency (F0) is one of the essential features in many acoustic related applications. Although numerous F0 detection algorithms have been developed, the detection accuracy in noisy environments still needs improvement. We present a hybrid noise resilient F0 detection algorithm named BaNa that combines the approaches of harmonic ratios and Cepstrum analysis. A Viterbi algorithm with a cost function is used to identify the F0 value among several F0 candidates. Speech and music databases with eight different types of additive noise are used to evaluate the performance of the BaNa algorithm and several classic and state-of-the-art F0 detection algorithms. Results show that for almost all types of noise and signal-to-noise ratio (SNR) values investigated, BaNa achieves the lowest Gross Pitch Error (GPE) rate among all the algorithms. Moreover, for the 0 dB SNR scenarios, the BaNa algorithm is shown to achieve 20% to 35% GPE rate for speech and 12% to 39% GPE rate for music. We also describe implementation issues that must be addressed to run the BaNa algorithm as a real-time application on a smartphone platform.
CitationYang, N., Ba, H., Cai, W., Demirkol, I., Heinzelman, W. BaNa: a noise resilient fundamental frequency detection algorithm for speech and music. "IEEE transactions on audio speech and language processing", 27 Agost 2014, vol. 22, núm. 12, p. 1833-1848. 
URIhttp://hdl.handle.net/2117/102780
DOI10.1109/TASLP.2014.2352453
ISSN1558-7916
Publisher versionhttp://ieeexplore.ieee.org/document/6884780/
Collections
  • Departament d'Enginyeria Telemàtica - Articles de revista [533]
  • WNG - Wireless Network Group - Articles de revista [151]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
10.1.1.569.9917.pdf2,207MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina