A time-dependent anisotropic model for argillaceous rocks: application to an underground excavation in Callovo-Oxfordian claystone

Cita com:
hdl:2117/102753
Document typeArticle
Defense date2017-05
Rights accessOpen Access
Abstract
The paper presents a constitutive model for argillaceous rocks, developed within the framework of elastoplasticity, that includes a number of features that are relevant for a satisfactory description of their hydromechanical behaviour: anisotropy of strength and stiffness, behaviour nonlinearity and occurrence of plastic strains prior to peak strength, significant softening after peak, time-dependent creep deformations and permeability increase due to damage. Both saturated and unsaturated conditions are envisaged. The constitutive model is then applied to the simulation of triaxial and creep tests on Callovo-Oxfordian (COx) claystone. Although the main objective has been the simulation of the COx claystone behaviour, the model can be readily used for other argillaceous materials. The constitutive model developed is then applied, via a suitable coupled hydromechanical formulation, to the analysis of the excavation of a drift in the Meuse/Haute-Marne Underground Research Laboratory. The pattern of observed pore water pressures and displacements, as well as the shape and extent of the damaged zone, are generally satisfactorily reproduced. The relevance and importance of rock anisotropy and of the development of a damaged zone around the excavations are clearly demonstrated.
CitationMánica, M.A., Gens, A., Vaunat, J., Ruiz, D.F. A time-dependent anisotropic model for argillaceous rocks: application to an underground excavation in Callovo-Oxfordian claystone. "Computers and geotechnics", Maig 2017, vol. 85, p. 341-350.
ISSN0266-352X
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0266352X16302701
Files | Description | Size | Format | View |
---|---|---|---|---|
Manica et al - revised - R2.pdf | 884,3Kb | View/Open |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain