Mostra el registre d'ítem simple

dc.contributor.authorLiu, Yu
dc.contributor.authorCadavid, Doris
dc.contributor.authorIbañez, Maria
dc.contributor.authorOrtega, Silvia
dc.contributor.authorMarti-Sanchez, Sara
dc.contributor.authorDobrozhan, Oleksandr
dc.contributor.authorKovalenko, Maksym V.
dc.contributor.authorArbiol, Jordi
dc.contributor.authorCabot, Andreu
dc.contributor.otherInstitut de Recerca en Energía de Catalunya
dc.date.accessioned2017-03-17T12:38:30Z
dc.date.available2017-03-17T12:38:30Z
dc.date.issued2016-10-01
dc.identifier.citationLiu, Y. [et al.]. Thermoelectric properties of semiconductor-metal composites produced by particle blending. "APL Materials", 1 Octubre 2016, vol. 4, núm. 104813, Issue 10.
dc.identifier.urihttp://hdl.handle.net/2117/102619
dc.description.abstractIn the quest for more efficient thermoelectric material able to convert thermal to electrical energy and vice versa, composites that combine a semiconductor host having a large Seebeck coefficient with metal nanodomains that provide phonon scattering and free charge carriers are particularly appealing. Here, we present our experimental results on the thermal and electrical transport properties of PbS-metal composites produced by a versatile particle blending procedure, and where the metal work function allows injecting electrons to the intrinsic PbS host. We compare the thermoelectric performance of composites with microcrystalline or nanocrystalline structures. The electrical conductivity of the microcrystalline host can be increased several orders of magnitude with the metal inclusion, while relatively high Seebeck coefficient can be simultaneously conserved. On the other hand, in nanostructured materials, the host crystallites are not able to sustain a band bending at its interface with the metal, becoming flooded with electrons. This translates into even higher electrical conductivities than the microcrystalline material, but at the expense of lower Seebeck coefficient values.
dc.language.isoeng
dc.publisherAmerican Institute of Physics Publising LLC
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.otherBlending
dc.subject.otherElectric conductivity
dc.subject.otherInterfaces (materials)
dc.subject.otherNanocrystals
dc.subject.otherNarrow band gap semiconductors
dc.subject.otherSeebeck coefficient
dc.subject.otherThermoelectric equipment
dc.subject.otherThermoelectricity
dc.titleThermoelectric properties of semiconductor-metal composites produced by particle blending
dc.typeArticle
dc.identifier.doi10.1063/1.4961679
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://aip.scitation.org/toc/apm/4/10?expanded=4
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/310250/EU/Ultra-versatile Nanoparticle Integration into Organized Nanoclusters/UNION
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/306733/EU/Chemically Engineered Nanocrystal Solids/NANOSOLID
local.citation.otherIssue 10
local.citation.publicationNameAPL Materials
local.citation.volume4
local.citation.number104813


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple