Stabbing circles for sets of segments in the plane
View/Open
claverol_latin2016.pdf (3,060Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/102514
Document typeConference report
Defense date2016
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Stabbing a set S of n segments in the plane by a line is a well-known problem. In this paper we consider the
variation where the stabbing object is a circle instead of a line. We show that the problem is tightly connected to cluster Voronoi diagrams, in particular, the Hausdorff and the farthest-color Voronoi diagram. Based on these diagrams, we provide a method to compute all the combinatorially different stabbing circles for S, and the stabbing circles with maximum and minimum radius. We give conditions under which our method is fast. These conditions are satisfied if the segments in S are parallel, resulting in a Onlog2n) time algorithm. We also observe that the stabbing circle problem for S can be solved in optimal O(n2) time and space by reducing the problem to computing the stabbing planes for a set of segments in 3D.
CitationClaverol, M., Khramtcova, E., Papadopoulou, E., Saumell, M., Seara, C. Stabbing circles for sets of segments in the plane. A: LATIN - Theoretical Informatics. Latin American Symposium. "LATIN 2016: Theoretical Informatics. 12th Latin American Symposium". Ensenada: 2016, p. 290-305.
Publisher versionhttp://link.springer.com/chapter/10.1007%2F978-3-662-49529-2_22
Files | Description | Size | Format | View |
---|---|---|---|---|
claverol_latin2016.pdf | 3,060Mb | Restricted access |