Mostra el registre d'ítem simple

dc.contributor.authorAccanto, Nicolò
dc.contributor.authorRoque Fernández, Pablo Manuel de
dc.contributor.authorGalvan-Sosa, Marcial
dc.contributor.authorChristodoulou, Sotirios
dc.contributor.authorMoreels, Iwan
dc.contributor.authorHulst, Niek F van
dc.contributor.otherUniversitat Politècnica de Catalunya. Institut de Ciències Fotòniques
dc.date.accessioned2017-03-10T09:03:00Z
dc.date.available2017-03-10T09:03:00Z
dc.date.issued2017-03-10
dc.identifier.citationAccanto, N. [et al.]. Rapid and robust control of single quantum dots. "Light: Science & Applications", 10 Març 2017, vol. 6, núm. e16239.
dc.identifier.issn2047-7538
dc.identifier.urihttp://hdl.handle.net/2117/102260
dc.description.abstractThe combination of single particle detection and ultrafast laser pulses is an instrumental method to track dynamics at the femtosecond time scale in single molecules, quantum dots and plasmonic nanoparticles. Optimal control of the extremely short-lived coherences of these individual systems has so far remained elusive, yet its successful implementation would enable arbitrary external manipulation of otherwise inaccessible nanoscale dynamics. In ensemble measurements, such control is often achieved by resorting to a closed-loop optimization strategy, where the spectral phase of a broadband laser field is iteratively optimized. This scheme needs long measurement times and strong signals to converge to the optimal solution. This requirement is in conflict with the nature of single emitters whose signals are weak and unstable. Here we demonstrate an effective closed-loop optimization strategy capable of addressing single quantum dots at room temperature, using as feedback observable the two-photon photoluminescence induced by a phase-controlled broadband femtosecond laser. Crucial to the optimization loop is the use of a deterministic and robust-against-noise search algorithm converging to the theoretically predicted solution in a reduced amount of steps, even when operating at the few-photon level. Full optimization of the single dot luminescence is obtained within ~100 trials, with a typical integration time of 100 ms per trial. These times are faster than the typical photobleaching times in single molecules at room temperature. Our results show the suitability of the novel approach to perform closed-loop optimizations on single molecules, thus extending the available experimental toolbox to the active control of nanoscale coherences.
dc.language.isoeng
dc.publisherNature
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshQuantum dots
dc.subject.otherQuantum Dots
dc.titleRapid and robust control of single quantum dots
dc.typeArticle
dc.subject.lemacQuàntums, Teoria dels
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.nature.com/lsa/journal/v6/n3/full/lsa2016239a.html?WT.feed_name=subjects_biological-sciences
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/247330/EU/Nano-Optical Antennas for Tuneable Single Photon Super-Emitters/NANOANTENNAS
local.citation.publicationNameLight: Science & Applications
local.citation.volume6
local.citation.numbere16239


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple