Mostra el registre d'ítem simple

dc.contributor.authorGálvez Carrillo, Maria Immaculada
dc.contributor.authorKock, Joachim
dc.contributor.authorTonks, Andrew
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2017-03-09T13:10:06Z
dc.date.available2017-03-09T13:10:06Z
dc.date.issued2016-12
dc.identifier.citationGalvez, M., Kock, J., Tonks, A. "Decomposition spaces in combinatorics". 2016.
dc.identifier.urihttp://hdl.handle.net/2117/102202
dc.description.abstractA decomposition space (also called unital 2-Segal space) is a simplicial object satisfying an exactness condition weaker than the Segal condition: just as the Segal condition expresses (up to homotopy) composition, the new condition expresses decomposition. It is a general framework for incidence (co)algebras. In the present contribution, after establishing a formula for the section coefficients, we survey a large supply of examples, emphasising the notion's firm roots in classical combinatorics. The first batch of examples, similar to binomial posets, serves to illustrate two key points: (1) the incidence algebra in question is realised directly from a decomposition space, without a reduction step, and reductions are often given by CULF functors; (2) at the objective level, the convolution algebra is a monoidal structure of species. Specifically, we encounter the usual Cauchy product of species, the shuffle product of L-species, the Dirichlet product of arithmetic species, the Joyal-Street external product of q-species and the Morrison `Cauchy' product of q-species, and in each case a power series representation results from taking cardinality. The external product of q-species exemplifies the fact that Waldhausen's S-construction on an abelian category is a decomposition space, yielding Hall algebras. The next class of examples includes Schmitt's chromatic Hopf algebra, the Fa\`a di Bruno bialgebra, the Butcher-Connes-Kreimer Hopf algebra of trees and several variations from operad theory. Similar structures on posets and directed graphs exemplify a general construction of decomposition spaces from directed restriction species. We finish by computing the M\
dc.format.extent67 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Topologia::Topologia algebraica
dc.subject.lcshCombinatorial topology
dc.subject.lcshCategories (Mathematics)
dc.subject.lcshCombinatorial analysis
dc.subject.otherCombinatorics
dc.subject.otherCategory Theory
dc.titleDecomposition spaces in combinatorics
dc.typeExternal research report
dc.subject.lemacTopologia combinatòria
dc.subject.lemacCategories (Matemàtica)
dc.subject.lemacAnàlisi combinatòria
dc.contributor.groupUniversitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
dc.subject.amsClassificació AMS::05 Combinatorics::05A Enumerative combinatorics
dc.subject.amsClassificació AMS::16 Associative rings and algebras
dc.subject.amsClassificació AMS::06 Order, lattices, ordered algebraic structures::06A Ordered sets
dc.subject.amsClassificació AMS::18 Category theory; homological algebra
dc.subject.amsClassificació AMS::55 Algebraic topology::55P Homotopy theory
dc.relation.publisherversionhttps://arxiv.org/abs/1612.09225
dc.rights.accessOpen Access
local.identifier.drac19740792
dc.description.versionPreprint
local.citation.authorGalvez, M.; Kock, J.; Tonks, A.


Fitxers d'aquest items

Thumbnail
Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple