Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

57.066 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ECG assessment based on neural networks with pretraining

Thumbnail
View/Open
final-version-ASOC-D-15-02185.pdf (1,904Mb) (Restricted access)   Request copy 

Què és aquest botó?

Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:

  • Disposem del correu electrònic de l'autor
  • El document té una mida inferior a 20 Mb
  • Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Share:
 
 
10.1016/j.asoc.2016.08.013
 
  View Usage Statistics
Cita com:
hdl:2117/101186

Show full item record
Ribas Ripoll, Vicent
Wojdel, Anna
Romero Merino, EnriqueMés informacióMés informacióMés informació
Ramos, Pablo
Brugada Terradellas, Josep
Document typeArticle
Defense date2016-12-01
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In this paper, we present a new automatic screening method to assess whether a patient from ambulatory care or emergency should be referred to a cardiology service. This method is based on deep neural networks with pretraining and takes as an input a raw ECG signal without annotation. This work is based on a prospective clinical study that took place at Hospital Clínic in Barcelona between 2011–2012 and recruited 1390 patients. For each patient, we recorded a 12-lead ECG and the diagnosis was conducted by the cardiology service at the same hospital. Normal, borderline normal and normal variant ECGs were labelled as normal and the rest as abnormal. Our deep neural networks with pretraining were tested through cross-validation with a cohort of 416 test patients. The performance of our model was compared against other standard classification methods such as neural networks without pretraining, Support Vector Machines, Extreme Learning Machines, k-Nearest Neighbours and a professional classification algorithm certified for medical use that annotates the raw ECG signals prior to classification. The resulting best classifier was a pretrained neural network with three hidden layers and 700 units in every layer. This network yielded an accuracy of 0.8552, a sensitivity of 0.9176 and a specificity of 0.7827. The best alternative classification method was a Support Vector Machine with a Gaussian kernel, which yielded an accuracy of 0.8476, a sensitivity of 0.9446 and a specificity of 0.7346. The professional classification algorithm yielded an accuracy of 0.8407, a sensitivity of 0.8558 and a specificity of 0.8214. Neural networks with pretraining automatically obtain a representation of the input data without resorting to any annotation and, thus, simplify the process of assessing normality of ECG signals. The results that we have obtained are slightly better than those obtained with the professional classification system and, for some network configurations, they can be considered as exchangeable. Neural networks with pretraining open up a promising line of research for the automatic assessment of ECG signals that may be used in the future in clinical practice.
CitationRibas, V., Wojdel, A., Romero, E., Ramos, P., Brugada, J. ECG assessment based on neural networks with pretraining. "Applied soft computing", 1 Desembre 2016, vol. 49, p. 399-406. 
URIhttp://hdl.handle.net/2117/101186
DOI10.1016/j.asoc.2016.08.013
ISSN1568-4946
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S1568494616304070
Collections
  • Departament de Ciències de la Computació - Articles de revista [909]
  • SOCO - Soft Computing - Articles de revista [66]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
final-version-ASOC-D-15-02185.pdfBlocked1,904MbPDFRestricted access

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina