Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.620 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge
  • Capítols de llibre
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge
  • Capítols de llibre
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning probability distributions generated by finite-state machines

Thumbnail
View/Open
j-main.pdf (1,104Mb)
Share:
 
 
10.1007/978-3-662-48395-4
 
  View Usage Statistics
Cita com:
hdl:2117/100347

Show full item record
Castro Rabal, JorgeMés informacióMés informacióMés informació
Gavaldà Mestre, RicardMés informacióMés informació
Document typePart of book or chapter of book
Defense date2016
PublisherSpringer
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
We review methods for inference of probability distributions generated by probabilistic automata and related models for sequence generation. We focus on methods that can be proved to learn in the inference in the limit and PAC formal models. The methods we review are state merging and state splitting methods for probabilistic deterministic automata and the recently developed spectral method for nondeterministic probabilistic automata. In both cases, we derive them from a high-level algorithm described in terms of the Hankel matrix of the distribution to be learned, given as an oracle, and then describe how to adapt that algorithm to account for the error introduced by a finite sample.
CitationCastro, J., Gavaldà, R. Learning probability distributions generated by finite-state machines. A: "Topics in grammatical inference". Berlín: Springer, 2016, p. 113-142. 
URIhttp://hdl.handle.net/2117/100347
DOI10.1007/978-3-662-48395-4
ISBN978-3-662-48393-0
Publisher versionhttp://www.springer.com/la/book/9783662483930
Collections
  • LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge - Capítols de llibre [14]
  • Departament de Ciències de la Computació - Capítols de llibre [83]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
j-main.pdf1,104MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina