Mostrar el registro sencillo del ítem
A visual embedding for the unsupervised extraction of abstract semantics
dc.contributor.author | Garcia Gasulla, Dario |
dc.contributor.author | Ayguadé Parra, Eduard |
dc.contributor.author | Labarta Mancho, Jesús José |
dc.contributor.author | Béjar Alonso, Javier |
dc.contributor.author | Cortés García, Claudio Ulises |
dc.contributor.author | Suzumura, Toyotaro |
dc.contributor.author | Chen, R |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Ciències de la Computació |
dc.contributor.other | Barcelona Supercomputing Center |
dc.date.accessioned | 2017-01-27T10:54:59Z |
dc.date.available | 2018-12-05T01:30:56Z |
dc.date.issued | 2017-05-01 |
dc.identifier.citation | García-Gasulla, D., Ayguadé, E., Labarta, J., Béjar, J., Cortés, U., Suzumura, T., Chen, R. A visual embedding for the unsupervised extraction of abstract semantics. "Cognitive systems research", 1 Maig 2017, vol. 42, p. 73-81. |
dc.identifier.issn | 1389-0417 |
dc.identifier.uri | http://hdl.handle.net/2117/100191 |
dc.description.abstract | Vector-space word representations obtained from neural network models have been shown to enable semantic operations based on vector arithmetic. In this paper, we explore the existence of similar information on vector representations of images. For that purpose we define a methodology to obtain large, sparse vector representations of image classes, and generate vectors through the state-of-the-art deep learning architecture GoogLeNet for 20 K images obtained from ImageNet. We first evaluate the resultant vector-space semantics through its correlation with WordNet distances, and find vector distances to be strongly correlated with linguistic semantics. We then explore the location of images within the vector space, finding elements close in WordNet to be clustered together, regardless of significant visual variances (e.g., 118 dog types). More surprisingly, we find that the space unsupervisedly separates complex classes without prior knowledge (e.g., living things). Afterwards, we consider vector arithmetics. Although we are unable to obtain meaningful results on this regard, we discuss the various problem we encountered, and how we consider to solve them. Finally, we discuss the impact of our research for cognitive systems, focusing on the role of the architecture being used. |
dc.description.sponsorship | This work is partially supported by the Joint Study Agreement no. W156463 under the IBM/BSC Deep Learning Center agreement, by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project and by the Generalitat de Catalunya (contracts 2014-SGR-1051), and by the Core Research for Evolutional Science and Technology (CREST) program of Japan Science and Technology Agency (JST). |
dc.format.extent | 9 p. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 4.0 International License |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject | Àrees temàtiques de la UPC::Ensenyament i aprenentatge::Metodologies docents |
dc.subject.lcsh | Cognitive learning |
dc.subject.other | Deep learning embeddings |
dc.subject.other | Visual reasoning |
dc.subject.other | Artificial image cognition |
dc.title | A visual embedding for the unsupervised extraction of abstract semantics |
dc.type | Article |
dc.subject.lemac | Aprenentatge cognitiu |
dc.contributor.group | Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions |
dc.contributor.group | Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic |
dc.identifier.doi | 10.1016/j.cogsys.2016.11.008 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://www.sciencedirect.com/science/article/pii/S1389041716300444 |
dc.rights.access | Open Access |
local.identifier.drac | 19593290 |
dc.description.version | Postprint (published version) |
dc.relation.projectid | info:eu-repo/grantAgreement/MINECO//TIN2015-65316-P/ES/COMPUTACION DE ALTAS PRESTACIONES VII/ |
dc.relation.projectid | info:eu-repo/grantAgreement/AGAUR/V PRI/2014 SGR 1051 |
local.citation.author | García-Gasulla, D., Ayguadé, E., Labarta, J., Béjar, J., Cortés, U., Suzumura, T., Chen, R. |
local.citation.publicationName | Cognitive systems research |
local.citation.volume | 42 |
local.citation.startingPage | 73 |
local.citation.endingPage | 81 |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Articles de revista [339]
-
Articles de revista [1.078]
-
Articles de revista [1.068]
-
Articles de revista [124]
-
Articles de revista [382]