Mostrar el registro sencillo del ítem

dc.contributor.authorGarcia Gasulla, Dario
dc.contributor.authorAyguadé Parra, Eduard
dc.contributor.authorLabarta Mancho, Jesús José
dc.contributor.authorBéjar Alonso, Javier
dc.contributor.authorCortés García, Claudio Ulises
dc.contributor.authorSuzumura, Toyotaro
dc.contributor.authorChen, R
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2017-01-27T10:54:59Z
dc.date.available2018-12-05T01:30:56Z
dc.date.issued2017-05-01
dc.identifier.citationGarcía-Gasulla, D., Ayguadé, E., Labarta, J., Béjar, J., Cortés, U., Suzumura, T., Chen, R. A visual embedding for the unsupervised extraction of abstract semantics. "Cognitive systems research", 1 Maig 2017, vol. 42, p. 73-81.
dc.identifier.issn1389-0417
dc.identifier.urihttp://hdl.handle.net/2117/100191
dc.description.abstractVector-space word representations obtained from neural network models have been shown to enable semantic operations based on vector arithmetic. In this paper, we explore the existence of similar information on vector representations of images. For that purpose we define a methodology to obtain large, sparse vector representations of image classes, and generate vectors through the state-of-the-art deep learning architecture GoogLeNet for 20 K images obtained from ImageNet. We first evaluate the resultant vector-space semantics through its correlation with WordNet distances, and find vector distances to be strongly correlated with linguistic semantics. We then explore the location of images within the vector space, finding elements close in WordNet to be clustered together, regardless of significant visual variances (e.g., 118 dog types). More surprisingly, we find that the space unsupervisedly separates complex classes without prior knowledge (e.g., living things). Afterwards, we consider vector arithmetics. Although we are unable to obtain meaningful results on this regard, we discuss the various problem we encountered, and how we consider to solve them. Finally, we discuss the impact of our research for cognitive systems, focusing on the role of the architecture being used.
dc.description.sponsorshipThis work is partially supported by the Joint Study Agreement no. W156463 under the IBM/BSC Deep Learning Center agreement, by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project and by the Generalitat de Catalunya (contracts 2014-SGR-1051), and by the Core Research for Evolutional Science and Technology (CREST) program of Japan Science and Technology Agency (JST).
dc.format.extent9 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Ensenyament i aprenentatge::Metodologies docents
dc.subject.lcshCognitive learning
dc.subject.otherDeep learning embeddings
dc.subject.otherVisual reasoning
dc.subject.otherArtificial image cognition
dc.titleA visual embedding for the unsupervised extraction of abstract semantics
dc.typeArticle
dc.subject.lemacAprenentatge cognitiu
dc.contributor.groupUniversitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions
dc.contributor.groupUniversitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
dc.identifier.doi10.1016/j.cogsys.2016.11.008
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S1389041716300444
dc.rights.accessOpen Access
local.identifier.drac19593290
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO//TIN2015-65316-P/ES/COMPUTACION DE ALTAS PRESTACIONES VII/
dc.relation.projectidinfo:eu-repo/grantAgreement/AGAUR/V PRI/2014 SGR 1051
local.citation.authorGarcía-Gasulla, D., Ayguadé, E., Labarta, J., Béjar, J., Cortés, U., Suzumura, T., Chen, R.
local.citation.publicationNameCognitive systems research
local.citation.volume42
local.citation.startingPage73
local.citation.endingPage81


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem