Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.823 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ANiComp - Anàlisi numèrica i computació científica
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ANiComp - Anàlisi numèrica i computació científica
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Monotonicity-preserving finite element schemes based on differentiable nonlinear stabilization

Thumbnail
View/Open
art018-lssc.pdf (1,000Mb)
 
10.1016/j.cma.2016.09.035
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/100080

Show full item record
Badia, SantiagoMés informacióMés informació
Bonilla de Toro, JesúsMés informació
Document typeArticle
Defense date2017-01
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectNUMEXAS - NUMERICAL METHODS AND TOOLS FOR KEY EXASCALE COMPUTING CHALLENGES IN ENGINEERING AND APPLIED SCIENCES (EC-FP7-611636)
COMFUS - Computational Methods for Fusion Technology (EC-FP7-258443)
Abstract
In this work, we propose a nonlinear stabilization technique for scalar conservation laws with implicit time stepping. The method relies on an artificial diffusion method, based on a graph-Laplacian operator. It is nonlinear, since it depends on a shock detector. Further, the resulting method is linearity preserving. The same shock detector is used to gradually lump the mass matrix. The resulting method is LED, positivity preserving, and also satisfies a global DMP. Lipschitz continuity has also been proved. However, the resulting scheme is highly nonlinear, leading to very poor nonlinear convergence rates. We propose a smooth version of the scheme, which leads to twice differentiable nonlinear stabilization schemes. It allows one to straightforwardly use Newton’s method and obtain quadratic convergence. In the numerical experiments, steady and transient linear transport, and transient Burgers’ equation have been considered in 2D. Using the Newton method with a smooth version of the scheme we can reduce 10 to 20 times the number of iterations of Anderson acceleration with the original non-smooth scheme. In any case, these properties are only true for the converged solution, but not for iterates. In this sense, we have also proposed the concept of projected nonlinear solvers, where a projection step is performed at the end of every nonlinear iterations onto a FE space of admissible solutions. The space of admissible solutions is the one that satisfies the desired monotonic properties (maximum principle or positivity).
CitationBadia, S., Bonilla, J. Monotonicity-preserving finite element schemes based on differentiable nonlinear stabilization. "Computer methods in applied mechanics and engineering", Gener 2017, vol. 313, p. 133-158. 
URIhttp://hdl.handle.net/2117/100080
DOI10.1016/j.cma.2016.09.035
ISSN0045-7825
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0045782516306405
Collections
  • ANiComp - Anàlisi numèrica i computació científica - Articles de revista [125]
  • Departament d'Enginyeria Civil i Ambiental - Articles de revista [3.386]
  • CIMNE - Centre Internacional de Mètodes Numèrics en Enginyeria - Articles de revista [1.067]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
art018-lssc.pdf1,000MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina