Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
14.368 Articles in journals published by the UPC
You are here:
View Item 
  •   DSpace Home
  • Revistes
  • SORT (Statistics and Operations Research Transactions)
  • 2009, Vol. 33, Núm. 1
  • View Item
  •   DSpace Home
  • Revistes
  • SORT (Statistics and Operations Research Transactions)
  • 2009, Vol. 33, Núm. 1
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modelling consumer credit risk via survival analysis

Thumbnail
View/Open
modelling.pdf (1,057Mb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2099/8937

Show full item record
Cao, Ricardo
Vilar Fernández, Juan Manuel
Devía, A.
Document typeArticle
Defense date2009
PublisherInstitut d'Estadística de Catalunya
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Credit risk models are used by financial companies to evaluate in advance the insolvency risk caused by credits that enter into default. Many models for credit risk have been developed over the past few decades. In this paper, we focus on those models that can be formulated in terms of the probability of default by using survival analysis techniques. With this objective three different mechanisms are proposed based on the key idea of writing the default probability in terms of the conditional distribution function of the time to default. The first method is based on a Cox’s regression model, the second approach uses generalized linear models under censoring and the third one is based on nonparametric kernel estimation, using the product-limit conditional distribution function estimator by Beran. The resulting nonparametric estimator of the default probability is proved to be consistent and asymptotically normal. An empirical study, based on modified real data, illustrates the three methods.
CitationCao, Ricardo; Vilar Fernández, Juan Manuel; Devía, A. Modelling consumer credit risk via survival analysis. "SORT", 2009, vol. 33, núm. 1, p. 3-30. 
URIhttp://hdl.handle.net/2099/8937
ISSN1696-2281
Collections
  • SORT (Statistics and Operations Research Transactions) - 2009, Vol. 33, Núm. 1 [4]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
modelling.pdf1,057MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina