dc.contributor.author | Huerta, Antonio |
dc.contributor.author | Casoni Rero, Eva |
dc.date.accessioned | 2009-06-08T08:32:41Z |
dc.date.available | 2009-06-08T08:32:41Z |
dc.date.issued | 2009-06-08T08:32:41Z |
dc.identifier.uri | http://hdl.handle.net/2099/7814 |
dc.description.abstract | A shock capturing strategy for high order Discontinuous Galerkin methods for
conservation laws is proposed. We present a method in the one-dimensional case based
on the introduction of artificial viscosity into the original equations. With this approach the shock is capture with sharp resolution maintaining high-order accuracy. The ideas for the extension to the two-dimensional case are also set. |
dc.format.extent | 10 p. |
dc.language.iso | eng |
dc.relation.ispartof | NMASE 07 (6th:2007:Vall de Núria) |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Equacions en derivades parcials |
dc.subject.lcsh | Partial differential equations |
dc.subject.other | Discontinuous Galerkin |
dc.subject.other | Artificial Viscosity |
dc.subject.other | Discontinuity Sensor |
dc.title | Shock-capturing with discontinuous garlekin methods |
dc.type | Conference report |
dc.subject.lemac | Equacions diferencials parcials |
dc.subject.lemac | Problemes de valor inicial |
dc.subject.lemac | Problemes de contorn |
dc.subject.ams | Classificació AMS::65 Numerical analysis::65M Partial differential equations, initial value and time-dependent initial-boundary value problems |
dc.rights.access | Open Access |