Show simple item record

dc.contributor.authorHuerta, Antonio
dc.contributor.authorCasoni Rero, Eva
dc.date.accessioned2009-06-08T08:32:41Z
dc.date.available2009-06-08T08:32:41Z
dc.date.issued2009-06-08T08:32:41Z
dc.identifier.urihttp://hdl.handle.net/2099/7814
dc.description.abstractA shock capturing strategy for high order Discontinuous Galerkin methods for conservation laws is proposed. We present a method in the one-dimensional case based on the introduction of artificial viscosity into the original equations. With this approach the shock is capture with sharp resolution maintaining high-order accuracy. The ideas for the extension to the two-dimensional case are also set.
dc.format.extent10 p.
dc.language.isoeng
dc.relation.ispartofNMASE 07 (6th:2007:Vall de Núria)
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Equacions en derivades parcials
dc.subject.lcshPartial differential equations
dc.subject.otherDiscontinuous Galerkin
dc.subject.otherArtificial Viscosity
dc.subject.otherDiscontinuity Sensor
dc.titleShock-capturing with discontinuous garlekin methods
dc.typeConference report
dc.subject.lemacEquacions diferencials parcials
dc.subject.lemacProblemes de valor inicial
dc.subject.lemacProblemes de contorn
dc.subject.amsClassificació AMS::65 Numerical analysis::65M Partial differential equations, initial value and time-dependent initial-boundary value problems
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record