Show simple item record

dc.contributor.authorCasoni Rero, Eva
dc.contributor.authorHuerta, Antonio
dc.description.abstractThis work is devoted to solve scalar hyperbolic conservation laws in the presence of strong shocks with discontinuous Galerkin methods (DGM). A standard approach is to use limiting strategies in order to avoid oscillations in the vicinity of the shock. Basically, these techniques reconstruct the solution with a lower order polynomial in those elements where discontinuities lie. These limiting procedures degrade the accuracy of the method and introduce an excessive amount of dissipation to the solution, in particular for high-order approximations. The aim of the present work is to use artificial diffusion instead of limiters to capture the shocks. We show preliminary results with the inviscid's Burgers equation and also with a convection-diffusion problem.
dc.format.extent21 p.
dc.relation.ispartofNMASE 07 (6th:2007:Vall de Núria)
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Equacions en derivades parcials
dc.subject.classificationEquacions diferencials parcials
dc.subject.lcshPartial differential equations
dc.subject.otherDiscontinuous Galerkin methods
dc.subject.otherArtificial diffusion
dc.subject.otherNon-linear conservation laws
dc.titleShock capturing for discontinuous Galerkin methods
dc.typeConference report
dc.subject.lemacEquacions en derivades parcials
dc.subject.amsClassificació AMS::65 Numerical analysis::65M Partial differential equations, initial value and time-dependent initial-boundary value problems
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain