Show simple item record

dc.contributor.authorSevilla Cárdenas, Rubén
dc.contributor.authorFernández Méndez, Sonia
dc.contributor.authorHuerta, Antonio
dc.description.abstractAn improvement of the classical finite element method is proposed in [1], the NURBS-Enhanced Finite Element Method (NEFEM). It considers an exact representation of the geometry by means of the usual CAD description of the boundary with Non-Uniform Rational B-Splines (NURBS). For elements not intersecting the boundary, a standard finite element interpolation and numerical integration is used. Specifically designed piecewise polynomial interpolation and numerical integration are proposed for those finite elements intersecting the NURBS boundary. In [2] a numerical example involving an electromagnetic scattering application, is used in order to demonstrate the applicability and behavior of the proposed methodology. The results are encouraging and show that the NEFEM is more accurate than the corresponding isoparametric finite elements, using a Discontinuous Galerkin (DG) formulation. Recent studies also demonstrate that, for a desired precision, the NEFEM is also more efficient in terms of number of degrees of freedom, and in terms of CPU time. In the present work the NEFEM is reviewed and applied to the solution of the Euler equations of a compressible inviscid fluid. This set of hyperbolic equations represents a more challenging application for the NEFEM because the nonlinearity of the hyperbolic system and the sensitivity of DG formulations to the imposition of the wall boundary condition in curved domains.
dc.format.extent11 p.
dc.relation.ispartofNMASE 07 (6th:2007:Vall de Núria)
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Equacions en derivades parcials
dc.subject.lcshEquacions en derivades parcials, problemes amb valors a la frontera
dc.subject.lcshMètodes bàsics
dc.titleNEFEM for EULER equations
dc.typeConference report
dc.subject.lemacEquacions en derivades parcials
dc.subject.lemacProblemes de contorn
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::65 Numerical analysis::65N Partial differential equations, boundary value problems
dc.subject.amsClassificació AMS::80 Classical thermodynamics, heat transfer::80M Basic methods
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain