Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
14.320 Articles in journals published by the UPC
You are here:
View Item 
  •   DSpace Home
  • Revistes
  • Qüestiió (Quaderns d'estadística i investigació operativa)
  • 1983, vol. 7, núm. 4
  • View Item
  •   DSpace Home
  • Revistes
  • Qüestiió (Quaderns d'estadística i investigació operativa)
  • 1983, vol. 7, núm. 4
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Time series model identification by estimating information, memory and quantiles

Thumbnail
View/Open
article.pdf (1,079Mb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2099/4516

Show full item record
Parzen, Emanuel
Document typeArticle
Defense date1983-12
PublisherUniversitat Politècnica de Barcelona. Centre de Càlcul
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 2.5 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 2.5 Spain
Abstract
This paper applies techniques of Quantile Data Analysis to non-parametrically analyze time series functions such as the sample spectral density, sample correlations and sample partial correlations. The aim is to identify the memory type of an observed time series, and thus to identify parametric time domain models that fit an observed time series. Time series models are usually tested for adequacy by testing if their residuals are white noise. It is proposed that an additional criterion of fit for a parametric model is that it has the non-parametrically estimated memory characteristics. An important diagnostic of memory is the index δ of regular variation of a spectral density; estimators are proposed for δ. Interpretations of the new quantile criteria are developed through cataloging their values for representative time series. The model identification procedures proposed are illustrated by analysis of long memory series simulated by Granger and Joyeux, and the airline model of Box and Jenkins.
URIhttp://hdl.handle.net/2099/4516
ISSN0210-8054 (versió paper)
Collections
  • Qüestiió (Quaderns d'estadística i investigació operativa) - 1983, vol. 7, núm. 4 [6]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
article.pdf1,079MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina