Show simple item record

dc.contributor.authorButucea, Cristina
dc.date.accessioned2007-11-12T19:08:59Z
dc.date.available2007-11-12T19:08:59Z
dc.date.issued2004
dc.identifier.citationButucea, Cristina. "Asymptotic normality of the integrated square error of a density estimator in the convolution model". SORT, 2004, Vol. 28, núm. 1
dc.identifier.issn1696-2281
dc.identifier.urihttp://hdl.handle.net/2099/3747
dc.description.abstractIn this paper we consider a kernel estimator of a density in a convolution model and give a central limit theorem for its integrated square error (ISE). The kernel estimator is rather classical in minimax theory when the underlying density is recovered from noisy observations. The kernel is fixed and depends heavily on the distribution of the noise, supposed entirely known. The bandwidth is not fixed, the results hold for any sequence of bandwidths decreasing to 0. In particular the central limit theorem holds for the bandwidth minimizing the mean integrated square error (MISE). Rates of convergence are sensibly different in the case of regular noise and of super-regular noise. The smoothness of the underlying unknown density is relevant for the evaluation of the MISE.
dc.format.extent9-26
dc.language.isoeng
dc.publisherInstitut d'Estadística de Catalunya
dc.relation.ispartofSORT. 2004, Vol. 28, Núm. 1 [January-June]
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/es/
dc.subject.otherInference
dc.titleAsymptotic normality of the integrated square error of a density estimator in the convolution model
dc.typeArticle
dc.subject.lemacInferència
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::62 Statistics::62G Nonparametric inference
dc.rights.accessOpen Access
local.personalitzacitaciotrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record