Show simple item record

dc.contributor.authorHüllermeier, Eyke
dc.contributor.authorRenners, Ingo
dc.contributor.authorGrauel, Adolf
dc.description.abstractThe success of machine learning methods for inducing models from data crucially depends on the proper incorporation of background knowledge about the model to be learned. The idea of constraint-regularized learning is to em- ploy fuzzy set-based modeling techniques in order to express such knowl- edge in a flexible way, and to formalize it in terms of fuzzy constraints. Thus, background knowledge can be used to appropriately bias the learn- ing process within the regularization framework of inductive inference. After a brief review of this idea, the paper offers an operationalization of constraint- regularized learning. The corresponding framework is based on evolutionary methods for model optimization and employs fuzzy rule bases of the Takagi- Sugeno type as flexible function approximators.
dc.publisherUniversitat Politècnica de Catalunya. Secció de Matemàtiques i Informàtica
dc.relation.ispartofMathware & soft computing . 2004 Vol. 11 Núm. 3
dc.rightsReconeixement-NoComercial-CompartirIgual 3.0 Espanya
dc.subject.otherLocal structural constraints
dc.subject.otherOptimization search methods
dc.titleAn evolutionary approach to constraint-regularized learning
dc.subject.lemacIntel·ligència artificial
dc.subject.lemacAprenentatge automàtic
dc.subject.lemacReconeixement de formes (Informàtica)
dc.subject.amsClassificació AMS::68 Computer science::68T Artificial intelligence
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain