Show simple item record

dc.contributor.authorAlcalá Fernández, Rafael
dc.contributor.authorCasillas Barranquero, Jorge
dc.contributor.authorCastro Peña, Juan Luis
dc.contributor.authorGonzález Muñoz, Antonio
dc.contributor.authorHerrera Triguero, Francisco
dc.date.accessioned2007-10-01T09:51:23Z
dc.date.available2007-10-01T09:51:23Z
dc.date.issued2001
dc.identifier.issn1134-5632
dc.identifier.urihttp://hdl.handle.net/2099/3604
dc.description.abstractThis paper presents the use of genetic algorithms to develop smartly tuned fuzzy logic controllers in multicriteria complex problems. This tuning approach has some specific restrictions that make it very particular and complex because of the large time requirements existing due to the need of considering multiple criteria ---which enlarges the solution search space---, and to the long computation time models usually used for fitness assessment. To solve these restrictions, two efficient genetic tuning strategies considering different multicriteria approaches have been developed and tested in a real-world problem for fuzzy control of HVAC Systems.
dc.format.extent179-201
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya. Secció de Matemàtiques i Informàtica
dc.relation.ispartofMathware & soft computing . 2001 Vol. 8 Núm. 2
dc.rightsReconeixement-NoComercial-CompartirIgual 3.0 Espanya
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.otherGenetic tuning
dc.subject.otherMultiple criteria
dc.subject.otherMultiple objectives
dc.subject.otherFuzzy logic controllers
dc.titleA multicriteria genetic tuning for fuzzy logic controllers
dc.typeArticle
dc.subject.lemacProgramari
dc.subject.lemacSistemes de control intel·ligents
dc.subject.amsClassificació AMS::68 Computer science::68N Software
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record