dc.contributor.author Agustench Cotilla, Eduard dc.contributor.author Bustince Sola, Humberto Nicanor dc.contributor.author Mohedano Salillas, Mª Victoria dc.date.accessioned 2007-09-26T08:57:04Z dc.date.available 2007-09-26T08:57:04Z dc.date.issued 1999 dc.identifier.issn 1134-5632 dc.identifier.uri http://hdl.handle.net/2099/3558 dc.description.abstract Firstly we present a geometric interpretation of interval-valued fuzzy sets. Secondly, we apply the method of least squares to the fuzzy inference rules when working with these sets. We begin approximating the lower and upper extremes of the membership intervals to axb type functions by means of the method of least squares. Then we analyze a technique for evaluating the conclusion of the generalized modus ponens and we verify the fulfillment of Fukami and alumni axioms [9]. dc.format.extent 267-276 dc.language.iso eng dc.publisher Universitat Politècnica de Catalunya. Secció de Matemàtiques i Informàtica dc.relation.ispartof Mathware & soft computing . 1999 Vol. 6 Núm. 2 [ -3 ] dc.rights Reconeixement-NoComercial-CompartirIgual 3.0 Espanya dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/ dc.subject.other Approximate reasoning dc.subject.other Fuzzy inference rules dc.subject.other Generalized modus ponens dc.subject.other Interval-valued fuzzy set dc.subject.other Method of least squares dc.title Method of least squares applied to the generalized modus ponens with interval-valued fuzzy sets dc.type Article dc.subject.lemac Intel·ligència artificial dc.subject.ams Classificació AMS::68 Computer science::68T Artificial intelligence dc.rights.access Open Access
﻿