Show simple item record

dc.contributor.authorAgustench Cotilla, Eduard
dc.contributor.authorBustince Sola, Humberto Nicanor
dc.contributor.authorMohedano Salillas, Mª Victoria
dc.description.abstractFirstly we present a geometric interpretation of interval-valued fuzzy sets. Secondly, we apply the method of least squares to the fuzzy inference rules when working with these sets. We begin approximating the lower and upper extremes of the membership intervals to axb type functions by means of the method of least squares. Then we analyze a technique for evaluating the conclusion of the generalized modus ponens and we verify the fulfillment of Fukami and alumni axioms [9].
dc.publisherUniversitat Politècnica de Catalunya. Secció de Matemàtiques i Informàtica
dc.relation.ispartofMathware & soft computing . 1999 Vol. 6 Núm. 2 [ -3 ]
dc.rightsReconeixement-NoComercial-CompartirIgual 3.0 Espanya
dc.subject.otherApproximate reasoning
dc.subject.otherFuzzy inference rules
dc.subject.otherGeneralized modus ponens
dc.subject.otherInterval-valued fuzzy set
dc.subject.otherMethod of least squares
dc.titleMethod of least squares applied to the generalized modus ponens with interval-valued fuzzy sets
dc.subject.lemacIntel·ligència artificial
dc.subject.amsClassificació AMS::68 Computer science::68T Artificial intelligence
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain