Show simple item record

dc.contributor.authorEsteva Massaguer, Francesc
dc.contributor.authorGodo Lacasa, Lluís
dc.date.accessioned2007-09-25T12:35:03Z
dc.date.available2007-09-25T12:35:03Z
dc.date.issued1999
dc.identifier.issn1134-5632
dc.identifier.urihttp://hdl.handle.net/2099/3555
dc.description.abstractIn this paper we investigate a propositional fuzzy logical system $\L\Pi$ which contains the well-known \L ukasiewicz, Product and G\"{o}del fuzzy logics as sublogics. We define the corresponding algebraic structures, called $\L\Pi$-algebras and prove the following completeness result: a formula $\varphi$ is provable in the $\L\Pi$ logic iff it is a tautology for all linear $\L\Pi$-algebras. Moreover, linear $\L\Pi$-algebras are shown to be embeddable in linearly ordered abelian rings with a strong unit and cancellation law.
dc.format.extent219-234
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya. Secció de Matemàtiques i Informàtica
dc.relation.ispartofMathware & soft computing . 1999 Vol. 6 Núm. 2 [ -3 ]
dc.rightsReconeixement-NoComercial-CompartirIgual 3.0 Espanya
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.otherŁ∏ algebras
dc.titlePutting together Łukasiewicz and product logics
dc.typeArticle
dc.subject.lemacLògica matemàtica
dc.subject.amsClassificació AMS::03 Mathematical logic and foundations::03B General logic
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record