Show simple item record

dc.contributor.authorGregorzewski, Przemyslaw
dc.contributor.authorHryniewicz, Olgierd
dc.description.abstractIn traditional statistics all parameters of the mathematical model and possible observations should be well defined. Sometimes such assumption appears too rigid for the real-life problems, especially while dealing with linguistic data or imprecise requirements. To relax this rigidity fuzzy methods are incorporated into statistics. We review hitherto existing achievements in testing statistical hypotheses in fuzzy environment, point out their advantages or disadvantages and practical problems. We propose also a formalization of that decision problem and indicate the directions of further investigations in order to construct a more general theory.
dc.publisherUniversitat Politècnica de Catalunya. Secció de Matemàtiques i Informàtica
dc.relation.ispartofMathware & soft computing . 1997 Vol. 4 Núm. 3
dc.rightsReconeixement-NoComercial-CompartirIgual 3.0 Espanya
dc.subject.otherHypothesis testing
dc.subject.otherFuzzy sets
dc.subject.otherFuzzy data
dc.subject.otherFussy hypothesis
dc.subject.otherNeyman-Pearson lemma
dc.subject.otherBayesian approach
dc.titleTesting satistical hipotheses in fuzzy environment
dc.subject.lemacTeoria de la decisió
dc.subject.lemacEstadística bayesiana
dc.subject.lemacSistemes difusos
dc.subject.amsClassificació AMS::62 Statistics::62C Decision theory
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain