dc.contributor.author Ramesh, Anavi dc.contributor.author Murray, Neil V. dc.date.accessioned 2007-09-14T11:08:00Z dc.date.available 2007-09-14T11:08:00Z dc.date.issued 1997 dc.identifier.issn 1134-5632 dc.identifier.uri http://hdl.handle.net/2099/3487 dc.description.abstract Prime implicant/implicate generating algorithms for multiple-valued logics (MVL's) are introduced. Techniques from classical logic not requiring large normal forms or truth tables are adapted to certain "regular'' multiple-valued logics. This is accomplished by means of signed formulas, a meta-logic for multiple valued logics; the formulas are normalized in a way analogous to negation normal form. The logic of signed formulas is classical in nature. The presented method is based on path dissolution, a strongly complete inference rule. The generalization of dissolution that accommodates signed formulas is described. The method is first characterized as a procedure iterated over the truth value domain \$\Delta\,=\,\{0,1, \dots ,n-1\}\$ of the MVL. The computational requirements are then reduced via parameterization with respect to the elements and the cardinality of \$\Delta\$. dc.format.extent 155-179 dc.language.iso eng dc.publisher Universitat Politècnica de Catalunya. Secció de Matemàtiques i Informàtica dc.relation.ispartof Mathware & soft computing . 1997 Vol. 4 Núm. 2 dc.rights Reconeixement-NoComercial-CompartirIgual 3.0 Espanya dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/ dc.subject.other MLV's dc.subject.other Multiple-valued logic dc.subject.other Regular logics dc.title Parameterized prime implicant/implicate computations for regular logics dc.type Article dc.subject.lemac Lògica matemàtica dc.subject.ams Classificació AMS::03 Mathematical logic and foundations::03B General logic dc.rights.access Open Access
﻿