Show simple item record

dc.contributor.authorRamesh, Anavi
dc.contributor.authorMurray, Neil V.
dc.description.abstractPrime implicant/implicate generating algorithms for multiple-valued logics (MVL's) are introduced. Techniques from classical logic not requiring large normal forms or truth tables are adapted to certain "regular'' multiple-valued logics. This is accomplished by means of signed formulas, a meta-logic for multiple valued logics; the formulas are normalized in a way analogous to negation normal form. The logic of signed formulas is classical in nature. The presented method is based on path dissolution, a strongly complete inference rule. The generalization of dissolution that accommodates signed formulas is described. The method is first characterized as a procedure iterated over the truth value domain $\Delta\,=\,\{0,1, \dots ,n-1\}$ of the MVL. The computational requirements are then reduced via parameterization with respect to the elements and the cardinality of $\Delta$.
dc.publisherUniversitat Politècnica de Catalunya. Secció de Matemàtiques i Informàtica
dc.relation.ispartofMathware & soft computing . 1997 Vol. 4 Núm. 2
dc.rightsReconeixement-NoComercial-CompartirIgual 3.0 Espanya
dc.subject.otherMultiple-valued logic
dc.subject.otherRegular logics
dc.titleParameterized prime implicant/implicate computations for regular logics
dc.subject.lemacLògica matemàtica
dc.subject.amsClassificació AMS::03 Mathematical logic and foundations::03B General logic
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain