Show simple item record

dc.contributor.authorVidal Verdú, Fernando
dc.contributor.authorNavas González, Rafael
dc.contributor.authorRodríguez-Vázquez, Ángel
dc.date.accessioned2007-09-13T12:52:04Z
dc.date.available2007-09-13T12:52:04Z
dc.date.issued1996
dc.identifier.issn1134-5632
dc.identifier.urihttp://hdl.handle.net/2099/3481
dc.description.abstractFuzzy controllers are able to incorporate knowledge expressed in if-then rules. These rules are given by experts or skilful operators. Problems arise when there are not experts or/and rules are not easy to find. Authors' proposal consists in an analog fuzzy controller which accepts structured language as well as input/output data pairs, thus rules can be extracted or tuned from human or software controller operation. Learning from data pairs has to be carried out under hardware restrictions in linearity, range and resolution. In this paper, modelling of building blocks arranged in a neuro-fuzzy architecture is made and issues related to on-chip learning are discussed. Computer simulations show that learning is possible for resolutions up to 6 bits, affordable with the cheapest VLSI technologies.
dc.format.extent435-446
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya. Secció de Matemàtiques i Informàtica
dc.relation.ispartofMathware & soft computing . 1996 Vol. 3 Núm. 3
dc.rightsReconeixement-NoComercial-CompartirIgual 3.0 Espanya
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.otherCMOS Fuzzy controllers
dc.subject.otherLearning from data
dc.titleLearning under hardware restrictions in CMOS fuzzy controlers able to extract rules from examples
dc.typeArticle
dc.subject.lemacSistemes de control
dc.subject.amsClassificació AMS::93 Systems Theory; Control::93C Control systems, guided systems
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record