dc.contributor.author Klawonn, Frank dc.contributor.author Castro Peña, Juan Luis dc.date.accessioned 2007-03-05T18:46:15Z dc.date.available 2007-03-05T18:46:15Z dc.date.issued 1995 dc.identifier.issn 1134-5632 dc.identifier.uri http://hdl.handle.net/2099/2472 dc.description.abstract Fuzzy set theory is based on a `fuzzification' of the predicate in (element of), the concept of membership degrees is considered as fundamental. In this paper we elucidate the connection between indistinguishability modelled by fuzzy equivalence relations and fuzzy sets. We show that the indistinguishability inherent to fuzzy sets can be computed and that this indistinguishability cannot be overcome in approximate reasoning. For our investigations we generalize from the unit interval as the basis for fuzzy sets, to the framework of GL--monoids that can be understood as a generalization of MV--algebras. Residuation is a basic concept in GL--monoids and many proofs can be formulated in a simple and clear way instead of using special properties of the unit interval. dc.format.extent 197-228 dc.language.iso eng dc.publisher Universitat Politècnica de Catalunya. Secció de Matemàtiques i Informàtica dc.relation.ispartof Mathware & soft computing . 1995 Vol. 2 Núm. 3 dc.rights Reconeixement-NoComercial-CompartirIgual 3.0 Espanya dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/ dc.subject.other Fuzzy sets dc.title Similarity in fuzzy reasoning dc.type Article dc.subject.lemac Conjunts borrosos dc.subject.lemac Lògica difusa dc.subject.ams Classificació AMS::03 Mathematical logic and foundations::03E Set theory dc.rights.access Open Access
﻿

### Este ítem aparece en la(s) siguiente(s) colección(ones)

Salvo que se indique lo contrario, los contenidos de esta obra estan sujetos a la licencia de Creative Commons: Reconocimiento-NoComercial-SinObraDerivada 3.0 España