Show simple item record

dc.contributor.authorCao, Zhichao
dc.contributor.authorYuan, Zhenzhou
dc.contributor.authorZhang, Silin
dc.date.accessioned2015-04-20T13:45:38Z
dc.date.available2015-04-20T13:45:38Z
dc.date.issued2015-04
dc.identifier.citationCao, Zhichao; Yuan, Zhenzhou; Zhang, Silin. Experimental exploration of RSSI model for the vehicle intelligent position system. "Journal of Industrial Engineering and Management", Abril 2015, vol. 8, núm. 1, p. 51-71.
dc.identifier.issn2013-0953
dc.identifier.urihttp://hdl.handle.net/2099/16343
dc.description.abstractPurpose: Vehicle intelligent position systems based on Received Signal Strength Indicator (RSSI) in Wireless Sensor Networks (WSNs) are efficiently utilized. The vehicle’s position accuracy is of great importance for transportation behaviors, such as dynamic vehicle routing problems and multiple pedestrian routing choice behaviors and so on. Therefore, a precise position and available optimization is necessary for total parameters of conventional RSSI model. Design/methodology/approach: In this paper, we investigate the experimental performance of translating the power measurements to the corresponding distance between each pair of nodes. The priori knowledge about the environment interference could impact the accuracy of vehicles’ position and the reliability of parameters greatly. Based on the real-world outdoor experiments, we compare different regression analysis of the RSSI model, in order to establish a calibration scheme on RSSI model. Findings: Empirical experimentation shows that the average errors of RSSI model are able to decrease throughout the rules of environmental factor n and shadowing factor η respectively. Moreover, the calculation complexity is reduced, as an innovative approach. Since variation tendency of environmental factor n, shadowing factor η with distance and signal strength could be simulated respectively, RSSI model fulfills the precision of the vehicle intelligent position system.
dc.format.extent21 p.
dc.language.isoeng
dc.publisherOmniaScience
dc.rightsAttribution-NonCommercial 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Economia i organització d'empreses::Direcció d’operacions::Modelització de transports i logística
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors
dc.subject.lcshGlobal Positioning System
dc.subject.lcshWireless sensor networks
dc.subject.otherRSSI model
dc.subject.otherEnvironmental factor n
dc.subject.otherShadowing factor η
dc.subject.otherIntelligent position
dc.subject.otherExperimental performance
dc.titleExperimental exploration of RSSI model for the vehicle intelligent position system
dc.typeArticle
dc.subject.lemacSistema de posicionament global
dc.identifier.dlB-28744-2008
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
local.citation.authorCao, Zhichao; Yuan, Zhenzhou; Zhang, Silin
local.citation.publicationNameJournal of Industrial Engineering and Management
local.citation.volume8
local.citation.number1
local.citation.startingPage51
local.citation.endingPage71


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial 3.0 Spain