Mostra el registre d'ítem simple

dc.contributor.authorJianhua, Wang
dc.contributor.authorXianfeng, Huang
dc.contributor.authorQiang, Mei
dc.contributor.authorGang, Tian
dc.date.accessioned2015-04-17T16:32:53Z
dc.date.available2015-04-17T16:32:53Z
dc.date.issued2014-12
dc.identifier.citationJianhua, Wang [et al.]. A unit cost adjusting heuristic algorithm for the integrated planning and scheduling of a two-stage supply chain. "Journal of Industrial Engineering and Management", Desembre 2014, vol. 7, núm. 5, p. 1433-1446.
dc.identifier.issn2013-0953
dc.identifier.urihttp://hdl.handle.net/2099/16338
dc.description.abstractPurpose: The stable relationship of one-supplier-one-customer is replaced by a dynamic relationship of multi-supplier-multi-customer in current market gradually, and efficient scheduling techniques are important tools of the dynamic supply chain relationship establishing process. This paper studies the optimization of the integrated planning and scheduling problem of a two-stage supply chain with multiple manufacturers and multiple retailers to obtain a minimum supply chain operating cost, whose manufacturers have different production capacities, holding and producing cost rates, transportation costs to retailers. Design/methodology/approach: As a complex task allocation and scheduling problem, this paper sets up an INLP model for it and designs a Unit Cost Adjusting (UCA) heuristic algorithm that adjust the suppliers’ supplying quantity according to their unit costs step by step to solve the model. Findings: Relying on the contrasting analysis between the UCA and the Lingo solvers for optimizing many numerical experiments, results show that the INLP model and the UCA algorithm can obtain its near optimal solution of the two-stage supply chain’s planning and scheduling problem within very short CPU time. Research limitations/implications: The proposed UCA heuristic can easily help managers to optimizing the two-stage supply chain scheduling problems which doesn’t include the delivery time and batch of orders. For two-stage supply chains are the most common form of actual commercial relationships, so to make some modification and study on the UCA heuristic should be able to optimize the integrated planning and scheduling problems of a supply chain with more reality constraints. Originality/value: This research proposes an innovative UCA heuristic for optimizing the integrated planning and scheduling problem of two-stage supply chains with the constraints of suppliers’ production capacity and the orders’ delivering time, and has a great practical significance to the dynamic relationship establishment of multi-supplier-multi-customer in current market.
dc.format.extent14 p.
dc.language.isoeng
dc.publisherOmniaScience
dc.rightsAttribution-NonCommercial 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Economia i organització d'empreses::Direcció d’operacions
dc.subject.lcshBusiness logistics
dc.subject.lcshProduction management
dc.subject.otherSupply chain
dc.subject.otherUCA heuristic
dc.subject.otherPlanning and scheduling
dc.subject.otherUnit cost adjusting
dc.subject.otherDynamic relationship
dc.titleA unit cost adjusting heuristic algorithm for the integrated planning and scheduling of a two-stage supply chain
dc.typeArticle
dc.subject.lemacProducció -- Planificació
dc.subject.lemacLogística (Indústria) -- Cost-eficàcia
dc.identifier.dlB-28744-2008
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
upcommons.citation.authorJianhua, Wang; Xianfeng, Huang; Qiang, Mei; Gang, Tian
upcommons.citation.publishedtrue
upcommons.citation.publicationNameJournal of Industrial Engineering and Management
upcommons.citation.volume7
upcommons.citation.number5
upcommons.citation.startingPage1433
upcommons.citation.endingPage1446


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple

Llevat que s'hi indiqui el contrari, els continguts d'aquesta obra estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial 3.0 Espanya