Show simple item record

dc.contributor.authorCoxeter, H. S. M.
dc.date.accessioned2006-01-23T14:05:57Z
dc.date.available2006-01-23T14:05:57Z
dc.date.issued1988
dc.identifier.citationCoxeter, H. S. M.. "Escher's lizards". Structural Topology, 1988, núm. 15
dc.identifier.issn0226-9171
dc.identifier.urihttp://hdl.handle.net/2099/1133
dc.description.abstractM.C. Escher a visité I'Alhambra en 1922, alors qu'il avait 24 ans ; il fut fasciné par la symétrie intriquée des décorations peintes par les Maures qui, appliquant de façon stricte le second commandement, n'utilisèrent que des motifs abstraits. Libre de telles restrictions, Escher aimait remplir le plan à I'aide de répliques de créatures reconnaissables comme des oiseaux, des poissons et des reptiles, sans laisser d'espace entre eux. L'un de ses motifs de Iézards, dans lequel 4 couleurs sont permutées par le “groupe Octique” D4, est tellement subtil que je le décrivis incorrectement dans mon exposé sur la symétrie de couleur [4, pp.15-33; 7, p.64]. La correction de cette erreur (que personne n'avait relevée) donne I'occasion d'une brève présentation de la théorie et d'une comparaison des deux notations G/G1= r et [G : H] = N. Le professeur J.J. Burckhardt a signalé la présence d'une erreur de nature historique à la page 21. Les 80 groupes d'espace dichromatique laissant invariant un plan ont été reconnus en 1928 par Heinrich Heesch, précédant de huit ans Woods. Pour connaître toute I'histoire telle que racontée par H.G. Bigalke, on peut consulter H. Heesch, Gesammelte Abhandlungen (Verlag Franzbecker, Bad Salzdetfurth, 1986), p. 11-111.
dc.description.abstractM.C. Escher visited the Alhambra in 1922, when he was 24, and was fascinated by the intricate symmetry of the decorations painted by the Moors who, strictly adhering to the Second Commandment, used onlyabstract motifs. Free from such restrictions, Escher enjoyed filling the plane with replicas of recognizable creatures such as birds, fishes and reptiles, leaving no gaps between them. One of his patterns of lizards, in which 4 colours are permuted by the 'octic group' s4, is so subtle that I described it incorrectly in my talk on Coloured Symmetry [4, pp.15-33; 7, p.641. The correction of this error (which nobody noticed) provides an opportunity for a brief survey of the theory, and a comparison of the two notations G/G1= r and [G : HI ] = N.Professor J.J. Burckhardt has pointed out thatthere is also a historical error on page 21. The 80 dichromatic space groups that leave one plane invariant were recognized by Heinrich Heesch in 1928, eight years before Woods. For the whole story, as told by H.G. Bigalke, see H Heesch, Gesammelte Abhandlungen (Verlag Franzbecker, Bad Salzdetfurth, 1986), pp. II-Ill.
dc.format.extent23-30
dc.language.isoeng
dc.language.isofra
dc.publisherUniversité du Québec à Montréal
dc.relation.ispartofStructural Topology 1988 núm 15
dc.subjectÀrees temàtiques de la UPC::Arquitectura
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Topologia
dc.titleEscher's lizards
dc.title.alternativeLes lézards d'escher
dc.typeArticle
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder