Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
14.368 Articles in journals published by the UPC
You are here:
View Item 
  •   DSpace Home
  • Revistes
  • Structural topology
  • 1990 núm 16
  • View Item
  •   DSpace Home
  • Revistes
  • Structural topology
  • 1990 núm 16
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rigid Circle and Sphere Packings. Part II: Infinite Packings with Finite Motion

Thumbnail
View/Open
st16-08-a5-ocr.pdf (3,342Mb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2099/1058

Show full item record
Connelly, Robert
Document typeArticle
Defense date1990
PublisherUniversité du Québec à Montréal
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Une juxtaposition P de cercles dans le plan est dite n-stable pour n = 1,2, . . . si tout ensemble de n cercles est tenu fixe par les autres. Pest destabilité finie si elle est n-stable pour tou t n = 1,2, . . . Parmi les 31 familles de juxtapositions régulières connexes de cercles dans le plan que I'on a classifiées, certaines sont de stabilité finie, d'autres non. Dans 3 des cas de familles de juxtapositions qui ne sont pas de stabilité finie, il apparaït que la plus petite valeur de n pour laquelle elles ne sont pas n-stables est arbitrairement grande, et dépend d'un paramètre de la famille
 
A packing P of circles in the plane is called n-stable, for n = 1,2… if every set of n circles is held fixed by the rest. P is called finitely stable if it is n-stable for every n = 1, 2,. . . For each of the 31 families of regular connected circle packings in the plane we classify which are finitely stable and which are not. For 3 of the cases when the families of packings are not finitely stable, it turns out that the smallest n for which they are not n-stable gets arbitrarily large, depending on a parameter of the family.
CitationConnelly, Robert. "Rigid Circle and Sphere Packings. Part II: Infinite Packings with Finite Motion". Structural Topology, 1990, núm. 16 
URIhttp://hdl.handle.net/2099/1058
ISSN0226-9171
Collections
  • Structural topology - 1990 núm 16 [7]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
st16-08-a5-ocr.pdf3,342MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina