Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
9.397 Lectures/texts in conference proceedings
You are here:
View Item 
  •   DSpace Home
  • Congressos
  • International Workshop on Optimal Network Topologies (IWONT)
  • 3er. 2010
  • View Item
  •   DSpace Home
  • Congressos
  • International Workshop on Optimal Network Topologies (IWONT)
  • 3er. 2010
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algebraic characterizations of bipartite distance-regular graphs

Thumbnail
View/Open
253_fiol_algebraic_characterizations.pdf (562,1Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2099/10389

Show full item record
Fiol Mora, Miquel ÀngelMés informacióMés informacióMés informació
Document typeConference report
Defense date2011
PublisherIniciativa Digital Politècnica
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Bipartite graphs are combinatorial objects bearing some interesting symmetries. Thus, their spectra—eigenvalues of its adjacency matrix—are symmetric about zero, as the corresponding eigenvectors come into pairs. Moreover, vertices in the same (respectively, different) independent set are always at even (respectively, odd) distance. Both properties have well-known consequences in most properties and parameters of such graphs. Roughly speaking, we could say that the conditions for a given property to hold in a general graph can be somehow relaxed to guaranty the same property for a bipartite graph. In this paper we comment upon this phenomenon in the framework of distance-regular graphs for which several characterizations, both of combinatorial or algebraic nature, are known. Thus, the presented characterizations of bipartite distance-regular graphs involve such parameters as the numbers of walks between vertices (entries of the powers of the adjacency matrix A), the crossed local multiplicities (entries of the idempotents $E_i$ or eigenprojectors), the predistance polynomials, etc. For instance, it is known that a graph G, with eigenvalues $λ_0$ > $λ_1$ > · · · > $λ_d$ and diameter D = d, is distance-regular if and only if its idempotents $E_1$ and $E_d$ belong to the vector space D spanned by its distance matrices I,A,$A_2$, . . .$A_d$. In contrast with this, for the same result to be true in the case of bipartite graphs, only $E_1$ ∈ D need to be required.
Related documenthttp://hdl.handle.net/2099.2/1750
CitationFiol Mora, Miquel Àngel. Algebraic characterizations of bipartite distance-regular graphs. A: International Workshop on Optimal Networks Topologies. "Proceedings of the 3rd International Workshop on Optimal Networks Topologies IWONT 2010". Barcelona: Iniciativa Digital Politècnica, 2011, p. 253-264. 
URIhttp://hdl.handle.net/2099/10389
ISBN978-84-7653-565-3
Collections
  • International Workshop on Optimal Network Topologies (IWONT) - 3er. 2010 [27]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
253_fiol_algebraic_characterizations.pdf562,1KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina