Show simple item record

dc.contributor.authorMarcote Ordax, Francisco Javier
dc.identifier.citationMarcote Ordax, Francisco Javier. On the k-restricted edge-connectivity of matched sum graphs. A: International Workshop on Optimal Networks Topologies. "Proceedings of the 3rd International Workshop on Optimal Networks Topologies IWONT 2010". Barcelona: Iniciativa Digital Politècnica, 2011, p. 323-334.
dc.description.abstractA matched sum graph $G_1$M$G_2$ of two graphs $G_1$ and $G_2$ of the same order n is obtained by adding to the union (or sum) of $G_1$ and $G_2$ a set M of n independent edges which join vertices in V ($G_1$) to vertices in V ($G_2$). When $G_1$ and $G_2$ are isomorphic, $G_1$M$G_2$ is just a permutation graph. In this work we derive bounds for the k-restricted edge connectivity λ(k) of matched sum graphs $G_1$M$G_2$ for 2 ≤ k ≤ 5, and present some sufficient conditions for the optimality of λ(k)($G_1$M$G_2$).
dc.format.extent12 p.
dc.publisherIniciativa Digital Politècnica
dc.relation.ispartofInternational Workshop on Optimal Networks Topologies
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs
dc.subject.lcshGraph theory
dc.subject.lcshGraph connectivity
dc.subject.lcshCombinatorial analysis
dc.titleOn the k-restricted edge-connectivity of matched sum graphs
dc.typeConference report
dc.subject.lemacGrafs, Teoria de
dc.subject.lemacAnàlisi combinatòria
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::05 Combinatorics::05C Graph theory
dc.rights.accessOpen Access
upcommons.citation.authorMarcote Ordax, Francisco Javier
upcommons.citation.contributorInternational Workshop on Optimal Networks Topologies
upcommons.citation.publicationNameProceedings of the 3rd International Workshop on Optimal Networks Topologies IWONT 2010

Files in this item


This item appears in the following Collection(s)

  • 3er. 2010 [27]
    Facultat de Matemàtiques i Estadística, Universitat Politècnica de Catalunya, Barcelona, 9-11 June 2010

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder