Polytaxic Polygons

View/Open
Cita com:
hdl:2099/1028
Document typeArticle
Defense date1986
PublisherUniversité du Québec à Montréal
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Habituellement, un protopavé est dit m-morphique si des copies congruentes du protopavé pavent le plan d’exactement m faqons non congruentes. I1 existe des protopavés r-morphiques connus pour r 5 10. Ici, un protopavé est défini comme étant t-taxique si des copies directement congruentes du protopavé pavent le plan d’exactement t façons non directement congruentes; un protopavé est appelé p-poïque si des copies directement congruentes du protopavé pavent le plan d’exactement p façons non congruentes. De nombreux exemples sont fournis, dont des polyominos 7-poïques et un polyomino 8-taxique. It is customary to say aprototile is 2m-morphic if congruent copies of the prototile tile the plane in exactly m noncongruent ways. There are known r-morphic prototiles for r ≤ 10. A prototile is defined here to be t-taxic if directly congruent copies of the prototile tile the plane in exactly t not directly congruent ways; a prototile is
called p-poic if directly congruent copies of the prototile tile the plane in exactly p noncongruent ways. Numerous examples are given, including 7-poic polyominoes and one 8-taxic polyomino.
CitationMartin, George E.. "Polytaxic Polygons". Structural Topology, 1986, núm. 12
ISSN0226-9171
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
st12-04-a1-ocr.pdf | 851,6Kb | View/Open |