Cones, infinity and one-story buildings
View/Open
Cita com:
hdl:2099/1003
Document typeArticle
Defense date1983
PublisherUniversité du Québec à Montréal
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Considérons un édifice à un seul étage construit à partir d’une série de colonnes verticales (barres et joints possiblement de longueurs différentes), une charpente de toit reliant le haut des colonnes, et en plus un minimum de trois entretoises
de mur additionnelles allant jusqu’au haut de certaines des colonnes. Nous examinons la rigidité statique (ou de façon équivalente, la rigidité infinitésimale) de cette charpente en la considérant comme un “cône”, à partir du toit jusqu’a un point dans l’infini au bout commun de toutes les colonnes verticales. Nous concluons que la charpente est statiquement rigide si et seulement si la projec-
tion orthogonale du toit dans un plan horizontal est statiquement rigide dans le plan, et si les trois entretoises de mur ne rencontrent pas une ligne verticale commune.
Cette analyse s’étend aussi aux structures de tenségrité (avec câbles), aux structures à entretoises de mur additionnelles (et à nombre réduit d’entretoises de toit) et aux édifices à plusieurs étages et à colonnes verticales. Dans tous les cas, la
rigidité statique de la structure est examinée en étudiant la rigidité statique d’une seule projection plane adéquate.
Nous concluons avec quelques divertissements mathématiques.. Nous présentons le modéle sphèrique pour la statique comme une véritable étude de géométrie projective. Consider a 1-story building constructed with a series of vertical columns (bars and joints possibly of different lengths), a roof framework connecting the tops of the columns, plus a minimum of thretl ,tdditionaI wall braces going to the tops of some columns. We examine the static rigidity (or equivalently, infinitesimal rigidity) of this framework by vicbwing it as a “cone” from the roof to the point at infinity at the common end of all the vertical columns. We conclude that the framework is sMcally rigid iii the orthogonal projection of the roof onto a horizontal plane is static,llly rigid in the plane, and the three wall braces do not meet a common vertical line.
This analysis is extended to tensegrity structures (with cables), to structures with extra wall braces (and fewer roof braces) and to multi-story buildings with vertical columns. In all cases the static rigidity of the structure is tested by the static rigidity of the appropriate single plane projection.
We conclude with some mathematical recreation. We introduce the spherical model for statics as a truly projective geometry study.
CitationWhiteley, Walter. "Cones, infinity and one-story buildings". Structural Topology, 1983, núm. 8
ISSN0226-9171
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
st8-10-a7.pdf | 8,129Mb | View/Open |