Show simple item record

dc.contributor.authorBuchsbaum, David
dc.date.accessioned2009-04-09T10:38:14Z
dc.date.available2009-04-09T10:38:14Z
dc.date.issued2009-03-18
dc.identifier.urihttp://hdl.handle.net/2099.2/964
dc.description.abstractStarting with a look at Hilbert's famous 1890 paper, which was considered at one time to have dealt the deathblow to Invariant Theory, and which inluded the famous Basis Theorem and Syzygy Theorem, we will trace some developments in commutative noetherian ring theory such as the Hilbert Function, homological dimension, global dimension of local rings, determinant alvarieties,and then make a natural return to some of the rings of invariants studied in that same Hilbert paper. While this arc will constitute the main structure of the talk,I may digress into some other related areas,such as characteristic-free representation theory of the general linear group.
dc.format.extent1:05:28
dc.language.isoeng
dc.relation.ispartofseriesConferències: dimecres a l'FME
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anells i àlgebres
dc.subject.lcshCommutative rings
dc.subject.lcshCommutative algebra
dc.titleHilbert Revisited
dc.typeAudiovisual
dc.subject.lemacAnells (Àlgebra)
dc.subject.lemacÀlgebra commutativa
dc.subject.amsClassificació AMS::13 Commutative rings and algebras
dc.rights.accessOpen Access
dc.description.versionLa Factoria FME


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain