Hamilton y la teoría de Galois

Resource access
Video
Chair / Department / Institute
Universitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística
Document typeAudiovisual
Defense date2006-03-08
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Indudablemente uno de los legados más importantes de Hamilton es la
rama de la teoría de ecuaciones diferenciales que en honor a su nombre
se denomina Sistemas Hamiltonianos. Ejemplos de sistemas Hamiltonianos
son la práctica totalidad de los sistemas de la Mecánica Clásica: los
problemas del movimiento de los cuerpos celestes o de las partículas
cargadas sometidas a campos electromagnéticos. Además, la formulación
más usual de la Mecánica Cuántica -que controla la dinámica de la
física atómica- se hace en forma Hamiltoniana, mediante un
procedimiento llamado cuantización del Sistema Hamiltoniano clásico
correspondiente. Entre los múltiples problemas de investigación en la
teoría actual de Sistemas Hamiltonianos aquí nos centraremos en el de
la Integrabilidad que “grosso modo” trata de responder a la pregunta de
si podemos resolver explícitamente las ecuaciones de Hamilton.
Sorprendentemente esta cuestión está relacionada con otras ramas
profundas de la matemática aparentemente alejadas de la teoría de
Sistemas Hamiltonianos, como la teoría de Galois.
Is part ofConferències: dimecres a l'FME
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
308_Poster.pdf | Poster | 370,7Kb | View/Open | |
308_Article.pdf | Article | 372,4Kb | View/Open |