Show simple item record

dc.contributorRos Oton, Xavier
dc.contributorCabré Vilagut, Xavier
dc.contributor.authorFernández-Real Girona, Xavier
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2014-11-25T10:49:25Z
dc.date.available2014-11-25T10:49:25Z
dc.date.issued2014-09
dc.identifier.urihttp://hdl.handle.net/2099.1/23913
dc.description.abstractIn this dissertation we present an introduction to nonlocal operators, and in particular, we study the fractional heat equation, which involves the fractional Laplacian of order 2s. In the first chapters we make a review of known classical results in the topic. After that, we introduce modern results on the elliptic problem for the fractional Laplacian and we use them to derive the main original result of the dissertation. We show that a solution "u" of the homogeneous fractional heat equation on a bounded domain U fulfills that u is in C^s(R^n) and that u/d^s can be extended Hölder continuously up to the boundary of the domain, where d(x) is the distance between x and the boundary of U. Furthermore, we are able to discuss the non-homogeneous case and obtain a similar result when the non-homogeneous term is time independent. Finally, we show an application and an extension of the result obtained. We are able to show that the Pohozaev identity holds for the solution of the fractional heat equation for positive times, and we extend the main result obtained for the fractional Laplacian to other nonlocal stable operators under certain conditions.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Equacions en derivades parcials
dc.subject.lcshDifferential equations, Partial
dc.subject.otherFractional Laplacian
dc.subject.otherNonlocal operator
dc.subject.otherBoundary regularity
dc.subject.otherFractional heat equation
dc.titleBoundary regularity for the fractional heat equation
dc.typeBachelor thesis
dc.subject.lemacEquacions en derivades parcials
dc.subject.amsClassificació AMS::35 Partial differential equations::35B Qualitative properties of solutions
dc.identifier.slugFME-1087
dc.rights.accessOpen Access
dc.date.updated2014-09-23T05:10:38Z
dc.audience.educationlevelGrau
dc.audience.mediatorUniversitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística
dc.audience.degreeGRAU EN MATEMÀTIQUES (Pla 2009)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain