dc.contributor | Ball, Simeon Michael |
dc.contributor.author | Albanell Sarroca, Elisabeth |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV |
dc.date.accessioned | 2014-11-25T10:42:50Z |
dc.date.available | 2014-11-25T10:42:50Z |
dc.date.issued | 2014-10 |
dc.identifier.uri | http://hdl.handle.net/2099.1/23910 |
dc.description.abstract | The focus of this bachelor thesis are maximum distance separable codes. A code is used to communicate over noise channel so any interferences that may occur can be detected and corrected. Maximum distance separable codes have a capacity to correct many errors. Maximum distances separable codes are usually constructed as linear codes over fields but in this text we will also consider them over certain commutative rings. Recently it has been proven that all linear maximum distance separable codes over prime fields are short and we will prove that this carries over to certain linear maximum distance separable codes over p-adic rings. |
dc.language.iso | eng |
dc.publisher | Universitat Politècnica de Catalunya |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística |
dc.subject.lcsh | Error-correcting codes (Information theory) |
dc.subject.other | Linear codes |
dc.subject.other | Singleton bound |
dc.subject.other | P-adic linear codes |
dc.subject.other | MDS codes |
dc.title | Maximum distance separable codes |
dc.type | Bachelor thesis |
dc.subject.lemac | Codis de correcció d'errors (Teoria de la informació) |
dc.subject.ams | Classificació AMS::94 Information And Communication, Circuits::94B Theory of error-correcting codes and error-detecting codes |
dc.identifier.slug | FME-843 |
dc.rights.access | Open Access |
dc.date.updated | 2014-10-22T05:40:11Z |
dc.audience.educationlevel | Grau |
dc.audience.mediator | Universitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística |
dc.audience.degree | GRAU EN MATEMÀTIQUES (Pla 2009) |