Show simple item record

dc.contributorBall, Simeon Michael
dc.contributor.authorAlbanell Sarroca, Elisabeth
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV
dc.date.accessioned2014-11-25T10:42:50Z
dc.date.available2014-11-25T10:42:50Z
dc.date.issued2014-10
dc.identifier.urihttp://hdl.handle.net/2099.1/23910
dc.description.abstractThe focus of this bachelor thesis are maximum distance separable codes. A code is used to communicate over noise channel so any interferences that may occur can be detected and corrected. Maximum distance separable codes have a capacity to correct many errors. Maximum distances separable codes are usually constructed as linear codes over fields but in this text we will also consider them over certain commutative rings. Recently it has been proven that all linear maximum distance separable codes over prime fields are short and we will prove that this carries over to certain linear maximum distance separable codes over p-adic rings.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshError-correcting codes (Information theory)
dc.subject.otherLinear codes
dc.subject.otherSingleton bound
dc.subject.otherP-adic linear codes
dc.subject.otherMDS codes
dc.titleMaximum distance separable codes
dc.typeBachelor thesis
dc.subject.lemacCodis de correcció d'errors (Teoria de la informació)
dc.subject.amsClassificació AMS::94 Information And Communication, Circuits::94B Theory of error-correcting codes and error-detecting codes
dc.identifier.slugFME-843
dc.rights.accessOpen Access
dc.date.updated2014-10-22T05:40:11Z
dc.audience.educationlevelGrau
dc.audience.mediatorUniversitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística
dc.audience.degreeGRAU EN MATEMÀTIQUES (Pla 2009)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record